Nuprl Lemma : opp-side_half-plane-angle-congruence
∀e:EuclideanPlane. ∀b,p,b',p',a,c,a',c':Point.
  ((a leftof bp ∧ c leftof pb) ⇒ (a' leftof b'p' ∧ c' leftof p'b') ⇒ (abp ≅a a'b'p' ∧ pbc ≅a p'b'c') ⇒ abc ≅a a'b'c')
Proof
Definitions occuring in Statement : 
geo-cong-angle: abc ≅a xyz, 
euclidean-plane: EuclideanPlane, 
geo-left: a leftof bc, 
geo-point: Point, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
geo-eq: a ≡ b, 
uiff: uiff(P;Q), 
oriented-plane: OrientedPlane, 
basic-geometry-: BasicGeometry-, 
so_apply: x[s1;s2;s3], 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
append: as @ bs, 
ge: i ≥ j , 
true: True, 
squash: ↓T, 
less_than: a < b, 
less_than': less_than'(a;b), 
le: A ≤ B, 
nat: ℕ, 
l_member: (x ∈ l), 
euclidean-plane: EuclideanPlane, 
subtract: n - m, 
cons: [a / b], 
select: L[n], 
false: False, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
not: ¬A, 
decidable: Dec(P), 
lelt: i ≤ j < k, 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
top: Top, 
l_all: (∀x∈L.P[x]), 
geo-colinear-set: geo-colinear-set(e; L), 
geo-lsep: a # bc, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
cand: A c∧ B, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
prop: ℙ, 
basic-geometry: BasicGeometry, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
exists: ∃x:A. B[x], 
geo-cong-angle: abc ≅a xyz, 
and: P ∧ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x]
Lemmas referenced : 
geo-between-outer-trans, 
geo-add-length-comm, 
geo-strict-between-sep1, 
geo-strict-between-implies-colinear, 
geo-between-inner-trans, 
geo-between-exchange3, 
geo-between-exchange4, 
geo-out_transitivity, 
geo-out_inversion, 
geo-congruent-symmetry, 
geo-inner-five-segment, 
geo-congruent-comm, 
geo-congruent-between-exists, 
geo-strict-between-sep2, 
oriented-colinear-append, 
cons_member, 
lsep-all-sym2, 
euclidean-plane-axioms, 
geo-congruent-full-symmetry, 
left-between-implies-right1, 
geo-left-out, 
geo-congruent-sep, 
geo-strict-between_functionality, 
basic-geometry_wf, 
geo-length-type_wf, 
true_wf, 
squash_wf, 
geo-add-length_wf, 
geo-add-length-between, 
geo-length-flip, 
geo-five-segment, 
geo-eq_inversion, 
geo-strict-between-sep3, 
geo-strict-between-implies-between, 
geo-between-symmetry, 
left-between-implies-right2, 
geo-proper-extend-exists, 
geo-between_functionality, 
geo-congruent_functionality, 
geo-left_functionality, 
geo-cong-angle_functionality, 
geo-lsep_functionality, 
geo-sep_functionality, 
geo-eq_weakening, 
geo-colinear_functionality, 
geo-congruent-iff-length, 
Euclid-Prop7, 
geo-lsep_wf, 
geo-colinear_wf, 
geo-strict-between_wf, 
geo-eq_wf, 
stable__geo-congruent, 
geo-colinear-cases, 
geo-sas2, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
l_member_wf, 
int_term_value_var_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformand_wf, 
nat_properties, 
select_wf, 
length_wf, 
nil_wf, 
cons_wf, 
geo-colinear-append, 
use-plane-sep, 
geo-left-out-1, 
istype-less_than, 
istype-le, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
istype-int, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
length_of_nil_lemma, 
istype-void, 
length_of_cons_lemma, 
geo-between-implies-colinear, 
geo-colinear-is-colinear-set, 
lsep-iff-all-sep, 
geo-sep-sym, 
left-implies-sep, 
geo-between-sep, 
geo-between-out, 
out-preserves-angle-cong_1, 
geo-congruent_wf, 
left-convex, 
geo-sep_wf, 
geo-between_wf, 
left-convex2, 
geo-point_wf, 
geo-primitives_wf, 
euclidean-plane-structure_wf, 
euclidean-plane_wf, 
subtype_rel_transitivity, 
euclidean-plane-subtype, 
euclidean-plane-structure-subtype, 
geo-left_wf, 
geo-cong-angle_wf
Rules used in proof : 
inrFormation_alt, 
imageElimination, 
promote_hyp, 
functionIsType, 
equalitySymmetry, 
equalityTransitivity, 
int_eqEquality, 
equalityIstype, 
baseClosed, 
imageMemberEquality, 
rename, 
setElimination, 
lambdaEquality_alt, 
approximateComputation, 
unionElimination, 
natural_numberEquality, 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
inlFormation_alt, 
independent_functionElimination, 
dependent_functionElimination, 
dependent_pairFormation_alt, 
inhabitedIsType, 
because_Cache, 
independent_isectElimination, 
instantiate, 
applyEquality, 
hypothesisEquality, 
isectElimination, 
extract_by_obid, 
introduction, 
universeIsType, 
productIsType, 
sqequalRule, 
independent_pairFormation, 
hypothesis, 
cut, 
thin, 
productElimination, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}b,p,b',p',a,c,a',c':Point.
    ((a  leftof  bp  \mwedge{}  c  leftof  pb)
    {}\mRightarrow{}  (a'  leftof  b'p'  \mwedge{}  c'  leftof  p'b')
    {}\mRightarrow{}  (abp  \mcong{}\msuba{}  a'b'p'  \mwedge{}  pbc  \mcong{}\msuba{}  p'b'c')
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  a'b'c')
Date html generated:
2019_10_29-AM-09_19_11
Last ObjectModification:
2019_10_18-PM-03_15_03
Theory : euclidean!plane!geometry
Home
Index