Nuprl Lemma : opp-side_half-plane-angle-congruence

e:EuclideanPlane. ∀b,p,b',p',a,c,a',c':Point.
  ((a leftof bp ∧ leftof pb)  (a' leftof b'p' ∧ c' leftof p'b')  (abp ≅a a'b'p' ∧ pbc ≅a p'b'c')  abc ≅a a'b'c')


Proof




Definitions occuring in Statement :  geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-left: leftof bc geo-point: Point all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  geo-eq: a ≡ b uiff: uiff(P;Q) oriented-plane: OrientedPlane basic-geometry-: BasicGeometry- so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) append: as bs ge: i ≥  true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B nat: l_member: (x ∈ l) euclidean-plane: EuclideanPlane subtract: m cons: [a b] select: L[n] false: False satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A decidable: Dec(P) lelt: i ≤ j < k rev_implies:  Q int_seg: {i..j-} top: Top l_all: (∀x∈L.P[x]) geo-colinear-set: geo-colinear-set(e; L) geo-lsep: bc iff: ⇐⇒ Q or: P ∨ Q cand: c∧ B uimplies: supposing a guard: {T} subtype_rel: A ⊆B prop: basic-geometry: BasicGeometry uall: [x:A]. B[x] member: t ∈ T exists: x:A. B[x] geo-cong-angle: abc ≅a xyz and: P ∧ Q implies:  Q all: x:A. B[x]
Lemmas referenced :  geo-between-outer-trans geo-add-length-comm geo-strict-between-sep1 geo-strict-between-implies-colinear geo-between-inner-trans geo-between-exchange3 geo-between-exchange4 geo-out_transitivity geo-out_inversion geo-congruent-symmetry geo-inner-five-segment geo-congruent-comm geo-congruent-between-exists geo-strict-between-sep2 oriented-colinear-append cons_member lsep-all-sym2 euclidean-plane-axioms geo-congruent-full-symmetry left-between-implies-right1 geo-left-out geo-congruent-sep geo-strict-between_functionality basic-geometry_wf geo-length-type_wf true_wf squash_wf geo-add-length_wf geo-add-length-between geo-length-flip geo-five-segment geo-eq_inversion geo-strict-between-sep3 geo-strict-between-implies-between geo-between-symmetry left-between-implies-right2 geo-proper-extend-exists geo-between_functionality geo-congruent_functionality geo-left_functionality geo-cong-angle_functionality geo-lsep_functionality geo-sep_functionality geo-eq_weakening geo-colinear_functionality geo-congruent-iff-length Euclid-Prop7 geo-lsep_wf geo-colinear_wf geo-strict-between_wf geo-eq_wf stable__geo-congruent geo-colinear-cases geo-sas2 list_ind_nil_lemma list_ind_cons_lemma l_member_wf int_term_value_var_lemma int_formula_prop_and_lemma itermVar_wf intformand_wf nat_properties select_wf length_wf nil_wf cons_wf geo-colinear-append use-plane-sep geo-left-out-1 istype-less_than istype-le int_formula_prop_less_lemma intformless_wf decidable__lt int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma istype-int itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le length_of_nil_lemma istype-void length_of_cons_lemma geo-between-implies-colinear geo-colinear-is-colinear-set lsep-iff-all-sep geo-sep-sym left-implies-sep geo-between-sep geo-between-out out-preserves-angle-cong_1 geo-congruent_wf left-convex geo-sep_wf geo-between_wf left-convex2 geo-point_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-left_wf geo-cong-angle_wf
Rules used in proof :  inrFormation_alt imageElimination promote_hyp functionIsType equalitySymmetry equalityTransitivity int_eqEquality equalityIstype baseClosed imageMemberEquality rename setElimination lambdaEquality_alt approximateComputation unionElimination natural_numberEquality dependent_set_memberEquality_alt voidElimination isect_memberEquality_alt inlFormation_alt independent_functionElimination dependent_functionElimination dependent_pairFormation_alt inhabitedIsType because_Cache independent_isectElimination instantiate applyEquality hypothesisEquality isectElimination extract_by_obid introduction universeIsType productIsType sqequalRule independent_pairFormation hypothesis cut thin productElimination sqequalHypSubstitution lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}b,p,b',p',a,c,a',c':Point.
    ((a  leftof  bp  \mwedge{}  c  leftof  pb)
    {}\mRightarrow{}  (a'  leftof  b'p'  \mwedge{}  c'  leftof  p'b')
    {}\mRightarrow{}  (abp  \mcong{}\msuba{}  a'b'p'  \mwedge{}  pbc  \mcong{}\msuba{}  p'b'c')
    {}\mRightarrow{}  abc  \mcong{}\msuba{}  a'b'c')



Date html generated: 2019_10_29-AM-09_19_11
Last ObjectModification: 2019_10_18-PM-03_15_03

Theory : euclidean!plane!geometry


Home Index