Nuprl Lemma : trans-kernel-is-kernel-fun
∀rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  ((e^2 = r1) 
⇒ translation-group-fun(rv;e;T) 
⇒ trans-kernel-fun(rv;e;λh,t. ρ(h;t)))
Proof
Definitions occuring in Statement : 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
trans-kernel: ρ(h;t)
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
trans-kernel-fun: trans-kernel-fun(rv;e;f)
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
trans-kernel: ρ(h;t)
, 
guard: {T}
, 
uimplies: b supposing a
, 
or: P ∨ Q
, 
translation-group-fun: translation-group-fun(rv;e;T)
, 
trans-apply: T_t(x)
, 
not: ¬A
, 
false: False
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
rneq: x ≠ y
Lemmas referenced : 
rneq_wf, 
trans-kernel_wf, 
real_wf, 
req_wf, 
rv-ip_wf, 
int-to-real_wf, 
set_wf, 
ss-point_wf, 
sq_stable__req, 
rless_wf, 
translation-group-fun_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-sep-irrefl, 
trans-apply_wf, 
rv-ip-rneq, 
ss-eq_weakening, 
trans-apply-0, 
rv-ip_functionality, 
req_functionality, 
uiff_transitivity, 
req_weakening, 
real_term_value_add_lemma, 
trans-apply_functionality, 
trans-apply-add, 
ss-eq_inversion, 
ss-eq_functionality, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
ss-eq_wf, 
sq_stable__rleq, 
itermAdd_wf, 
rv-mul_wf, 
rv-add_wf, 
radd_wf, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermConstant_wf, 
itermSubtract_wf, 
rleq_wf, 
rleq_weakening, 
rleq_weakening_rless, 
rsub_functionality_wrt_rleq, 
rleq_weakening_equal, 
rsub_wf, 
rleq_functionality_wrt_implies, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
rv-ip-add, 
rmul_functionality, 
rv-ip-mul, 
req_transitivity, 
radd_functionality, 
itermMultiply_wf, 
itermMinus_wf, 
radd-rminus-both, 
rless_functionality, 
rminus_wf, 
rmul_wf, 
radd-preserves-rless, 
trans-apply-sep, 
ss-sep_functionality, 
rv-0-add, 
rv-0_wf, 
rv-add-sep-iff, 
rv-mul-sep-zero, 
rabs-of-nonneg, 
rabs_wf, 
req-implies-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_set_memberEquality, 
natural_numberEquality, 
because_Cache, 
lambdaEquality, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
functionEquality, 
instantiate, 
independent_isectElimination, 
unionElimination, 
productElimination, 
voidElimination, 
dependent_pairFormation, 
voidEquality, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
approximateComputation, 
productEquality, 
levelHypothesis, 
equalitySymmetry, 
equalityTransitivity, 
addLevel, 
inlFormation, 
promote_hyp
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((e\^{}2  =  r1)  {}\mRightarrow{}  translation-group-fun(rv;e;T)  {}\mRightarrow{}  trans-kernel-fun(rv;e;\mlambda{}h,t.  \mrho{}(h;t)))
Date html generated:
2017_10_05-AM-00_23_09
Last ObjectModification:
2017_08_10-PM-03_38_31
Theory : inner!product!spaces
Home
Index