Nuprl Lemma : trans-kernel-is-kernel-fun

rv:InnerProductSpace. ∀e:Point. ∀T:ℝ ⟶ Point ⟶ Point.
  ((e^2 r1)  translation-group-fun(rv;e;T)  trans-kernel-fun(rv;e;λh,t. ρ(h;t)))


Proof




Definitions occuring in Statement :  trans-kernel-fun: trans-kernel-fun(rv;e;f) trans-kernel: ρ(h;t) translation-group-fun: translation-group-fun(rv;e;T) rv-ip: x ⋅ y inner-product-space: InnerProductSpace req: y int-to-real: r(n) real: ss-point: Point all: x:A. B[x] implies:  Q lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q trans-kernel-fun: trans-kernel-fun(rv;e;f) and: P ∧ Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B sq_stable: SqStable(P) squash: T trans-kernel: ρ(h;t) guard: {T} uimplies: supposing a or: P ∨ Q translation-group-fun: translation-group-fun(rv;e;T) trans-apply: T_t(x) not: ¬A false: False rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) exists: x:A. B[x] top: Top req_int_terms: t1 ≡ t2 rge: x ≥ y rev_implies:  Q iff: ⇐⇒ Q rneq: x ≠ y
Lemmas referenced :  rneq_wf trans-kernel_wf real_wf req_wf rv-ip_wf int-to-real_wf set_wf ss-point_wf sq_stable__req rless_wf translation-group-fun_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-sep-irrefl trans-apply_wf rv-ip-rneq ss-eq_weakening trans-apply-0 rv-ip_functionality req_functionality uiff_transitivity req_weakening real_term_value_add_lemma trans-apply_functionality trans-apply-add ss-eq_inversion ss-eq_functionality real_term_value_var_lemma real_term_value_const_lemma real_term_value_sub_lemma real_polynomial_null ss-eq_wf sq_stable__rleq itermAdd_wf rv-mul_wf rv-add_wf radd_wf req-iff-rsub-is-0 itermVar_wf itermConstant_wf itermSubtract_wf rleq_wf rleq_weakening rleq_weakening_rless rsub_functionality_wrt_rleq rleq_weakening_equal rsub_wf rleq_functionality_wrt_implies real_term_value_mul_lemma real_term_value_minus_lemma rv-ip-add rmul_functionality rv-ip-mul req_transitivity radd_functionality itermMultiply_wf itermMinus_wf radd-rminus-both rless_functionality rminus_wf rmul_wf radd-preserves-rless trans-apply-sep ss-sep_functionality rv-0-add rv-0_wf rv-add-sep-iff rv-mul-sep-zero rabs-of-nonneg rabs_wf req-implies-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality functionExtensionality applyEquality hypothesis setElimination rename dependent_set_memberEquality natural_numberEquality because_Cache lambdaEquality independent_functionElimination imageMemberEquality baseClosed imageElimination dependent_functionElimination functionEquality instantiate independent_isectElimination unionElimination productElimination voidElimination dependent_pairFormation voidEquality isect_memberEquality intEquality int_eqEquality approximateComputation productEquality levelHypothesis equalitySymmetry equalityTransitivity addLevel inlFormation promote_hyp

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}e:Point.  \mforall{}T:\mBbbR{}  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point.
    ((e\^{}2  =  r1)  {}\mRightarrow{}  translation-group-fun(rv;e;T)  {}\mRightarrow{}  trans-kernel-fun(rv;e;\mlambda{}h,t.  \mrho{}(h;t)))



Date html generated: 2017_10_05-AM-00_23_09
Last ObjectModification: 2017_08_10-PM-03_38_31

Theory : inner!product!spaces


Home Index