Nuprl Lemma : arith-geom-mean-inequality

x,y:{t:ℝr0 ≤ t} .  ((rsqrt(x y) ≤ (x y/r(2))) ∧ (x ≠  (rsqrt(x y) < (x y/r(2)))))


Proof




Definitions occuring in Statement :  rsqrt: rsqrt(x) rdiv: (x/y) rneq: x ≠ y rleq: x ≤ y rless: x < y rmul: b radd: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a implies:  Q rsub: y and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q guard: {T} less_than: a < b squash: T less_than': less_than'(a;b) true: True sq_stable: SqStable(P) subtype_rel: A ⊆B le: A ≤ B false: False not: ¬A rge: x ≥ y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_type: SQType(T) rless: x < y sq_exists: x:{A| B[x]} nat_plus: +
Lemmas referenced :  set_wf real_wf rleq_wf int-to-real_wf req_wf rmul_wf rsub_wf radd_wf rminus_wf req_weakening uiff_transitivity req_functionality req_transitivity rmul-distrib radd_functionality rmul_over_rminus rminus_functionality rmul_comm rminus-rminus req_inversion radd-assoc radd_comm radd-ac rminus-as-rmul rmul-distrib2 rmul_functionality radd-int rmul-identity1 rmul-assoc square-nonneg radd-preserves-rless rless_wf square-nonzero rless_transitivity2 rless_transitivity1 rneq_wf rless_functionality radd-zero-both radd-rminus-both rleq_functionality rmul_preserves_rleq rdiv_wf rless-int rmul_preserves_rless rsqrt_wf rmul-nonneg-case1 sq_stable__rleq rmul-rdiv-cancel2 radd-preserves-rleq rmul-zero-both rleq-int false_wf rleq_weakening_equal rleq_functionality_wrt_implies rsqrt_functionality_wrt_rleq radd-non-neg rsqrt-of-square rsqrt-rmul subtype_base_sq int_subtype_base decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf rsqrt_functionality rmul-int rsqrt_functionality_wrt_rless nat_plus_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis sqequalRule lambdaEquality natural_numberEquality hypothesisEquality setElimination rename because_Cache minusEquality addEquality independent_isectElimination independent_functionElimination productElimination unionElimination inlFormation dependent_functionElimination inrFormation addLevel levelHypothesis promote_hyp independent_pairFormation imageMemberEquality baseClosed imageElimination dependent_set_memberEquality applyEquality equalityTransitivity equalitySymmetry setEquality productEquality instantiate cumulativity intEquality dependent_pairFormation isect_memberEquality voidElimination voidEquality computeAll multiplyEquality

Latex:
\mforall{}x,y:\{t:\mBbbR{}|  r0  \mleq{}  t\}  .    ((rsqrt(x  *  y)  \mleq{}  (x  +  y/r(2)))  \mwedge{}  (x  \mneq{}  y  {}\mRightarrow{}  (rsqrt(x  *  y)  <  (x  +  y/r(2)))))



Date html generated: 2016_10_26-AM-10_14_06
Last ObjectModification: 2016_09_07-AM-00_15_59

Theory : reals


Home Index