Nuprl Lemma : arith-geom-mean-inequality
∀x,y:{t:ℝ| r0 ≤ t} .  ((rsqrt(x * y) ≤ (x + y/r(2))) ∧ (x ≠ y 
⇒ (rsqrt(x * y) < (x + y/r(2)))))
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
rleq: x ≤ y
, 
rless: x < y
, 
rmul: a * b
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
rsub: x - y
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
false: False
, 
not: ¬A
, 
rge: x ≥ y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_type: SQType(T)
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
nat_plus: ℕ+
Lemmas referenced : 
set_wf, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rsub_wf, 
radd_wf, 
rminus_wf, 
req_weakening, 
uiff_transitivity, 
req_functionality, 
req_transitivity, 
rmul-distrib, 
radd_functionality, 
rmul_over_rminus, 
rminus_functionality, 
rmul_comm, 
rminus-rminus, 
req_inversion, 
radd-assoc, 
radd_comm, 
radd-ac, 
rminus-as-rmul, 
rmul-distrib2, 
rmul_functionality, 
radd-int, 
rmul-identity1, 
rmul-assoc, 
square-nonneg, 
radd-preserves-rless, 
rless_wf, 
square-nonzero, 
rless_transitivity2, 
rless_transitivity1, 
rneq_wf, 
rless_functionality, 
radd-zero-both, 
radd-rminus-both, 
rleq_functionality, 
rmul_preserves_rleq, 
rdiv_wf, 
rless-int, 
rmul_preserves_rless, 
rsqrt_wf, 
rmul-nonneg-case1, 
sq_stable__rleq, 
rmul-rdiv-cancel2, 
radd-preserves-rleq, 
rmul-zero-both, 
rleq-int, 
false_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rsqrt_functionality_wrt_rleq, 
radd-non-neg, 
rsqrt-of-square, 
rsqrt-rmul, 
subtype_base_sq, 
int_subtype_base, 
decidable__equal_int, 
satisfiable-full-omega-tt, 
intformnot_wf, 
intformeq_wf, 
itermConstant_wf, 
itermMultiply_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_wf, 
rsqrt_functionality, 
rmul-int, 
rsqrt_functionality_wrt_rless, 
nat_plus_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
minusEquality, 
addEquality, 
independent_isectElimination, 
independent_functionElimination, 
productElimination, 
unionElimination, 
inlFormation, 
dependent_functionElimination, 
inrFormation, 
addLevel, 
levelHypothesis, 
promote_hyp, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
setEquality, 
productEquality, 
instantiate, 
cumulativity, 
intEquality, 
dependent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
multiplyEquality
Latex:
\mforall{}x,y:\{t:\mBbbR{}|  r0  \mleq{}  t\}  .    ((rsqrt(x  *  y)  \mleq{}  (x  +  y/r(2)))  \mwedge{}  (x  \mneq{}  y  {}\mRightarrow{}  (rsqrt(x  *  y)  <  (x  +  y/r(2)))))
Date html generated:
2016_10_26-AM-10_14_06
Last ObjectModification:
2016_09_07-AM-00_15_59
Theory : reals
Home
Index