Nuprl Lemma : circle-param-onto
∀p:{p:ℝ^2| r2-unit-circle(p)} . ((r(-1) < (p 0)) ⇒ (∃t:ℝ. req-vec(2;circle-param(t);p)))
Proof
Definitions occuring in Statement : 
circle-param: circle-param(t), 
r2-unit-circle: r2-unit-circle(p), 
req-vec: req-vec(n;x;y), 
real-vec: ℝ^n, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
apply: f a, 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
r2-unit-circle: r2-unit-circle(p), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
prop: ℙ, 
real-vec: ℝ^n, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
squash: ↓T, 
true: True, 
sq_stable: SqStable(P), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2, 
top: Top, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
cand: A c∧ B, 
req-vec: req-vec(n;x;y), 
decidable: Dec(P), 
sq_type: SQType(T), 
circle-param: circle-param(t), 
eq_int: (i =z j), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
rev_uimplies: rev_uimplies(P;Q), 
bfalse: ff, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
rge: x ≥ y, 
rdiv: (x/y)
Lemmas referenced : 
sq_stable__req, 
radd_wf, 
rnexp_wf, 
false_wf, 
le_wf, 
lelt_wf, 
int-to-real_wf, 
rless_wf, 
set_wf, 
real-vec_wf, 
r2-unit-circle_wf, 
rless-implies-rless, 
rdiv_wf, 
req-vec_wf, 
circle-param_wf, 
rsub_wf, 
itermSubtract_wf, 
itermVar_wf, 
itermConstant_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
real_term_value_add_lemma, 
real_wf, 
equal_wf, 
rmul-is-positive, 
square-nonneg, 
req-vec_inversion, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
req-rdiv, 
rmul_wf, 
rmul_preserves_req, 
int_seg_subtype, 
int_seg_cases, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
int_seg_wf, 
trivial-rless-radd, 
rless-int, 
rminus_wf, 
rinv_wf2, 
itermMultiply_wf, 
itermMinus_wf, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
req_functionality, 
req_transitivity, 
radd_functionality, 
rmul_functionality, 
req_weakening, 
rmul-rinv3, 
rmul-rinv, 
rminus_functionality, 
real_term_value_mul_lemma, 
real_term_value_minus_lemma, 
req_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
radd-preserves-req, 
radd-rminus-both, 
rnexp2, 
rmul-identity1, 
req-implies-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
imageElimination, 
minusEquality, 
lambdaEquality, 
dependent_functionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
inrFormation, 
setEquality, 
productElimination, 
approximateComputation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
productEquality, 
unionElimination, 
instantiate, 
cumulativity, 
hypothesis_subsumption, 
addEquality, 
universeEquality
Latex:
\mforall{}p:\{p:\mBbbR{}\^{}2|  r2-unit-circle(p)\}  .  ((r(-1)  <  (p  0))  {}\mRightarrow{}  (\mexists{}t:\mBbbR{}.  req-vec(2;circle-param(t);p)))
 Date html generated: 
2017_10_03-AM-10_52_24
 Last ObjectModification: 
2017_06_18-PM-01_24_56
Theory : reals
Home
Index