Nuprl Lemma : rn-prod-metric-le-max-metric
∀[n:ℕ]. rn-prod-metric(n) ≤ r(n)*max-metric(n)
Proof
Definitions occuring in Statement : 
max-metric: max-metric(n)
, 
rn-prod-metric: rn-prod-metric(n)
, 
real-vec: ℝ^n
, 
metric-leq: d1 ≤ d2
, 
scale-metric: c*d
, 
int-to-real: r(n)
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rn-prod-metric: rn-prod-metric(n)
, 
metric-leq: d1 ≤ d2
, 
mdist: mdist(d;x;y)
, 
prod-metric: prod-metric(k;d)
, 
scale-metric: c*d
, 
rmetric: rmetric()
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
subtract: n - m
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
metric: metric(X)
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
, 
guard: {T}
, 
max-metric: max-metric(n)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
ifthenelse: if b then t else f fi 
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
sq_stable: SqStable(P)
, 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
le_witness_for_triv, 
real-vec_wf, 
istype-le, 
subtract-1-ge-0, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-nat, 
rsum-empty, 
rmul-nonneg-case1, 
int-to-real_wf, 
max-metric_wf, 
rleq_weakening_equal, 
metric-nonneg, 
rsum_wf, 
subtract_wf, 
rabs_wf, 
rsub_wf, 
int_seg_properties, 
decidable__lt, 
itermAdd_wf, 
itermSubtract_wf, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
int_seg_wf, 
radd_wf, 
rmul_wf, 
real-vec-subtype, 
rleq_functionality, 
rsum-split-last, 
req_weakening, 
rleq_functionality_wrt_implies, 
radd_functionality_wrt_rleq, 
primrec-unroll, 
primrec_wf, 
real_wf, 
rmax_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
rleq-rmax, 
req-int, 
subtract-add-cancel, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rleq-int, 
rleq_wf, 
req_functionality, 
radd-int, 
rmul_functionality, 
rmul_preserves_rleq2, 
sq_stable__rleq, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq-implies-rleq, 
real_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionIsTypeImplies, 
inhabitedIsType, 
dependent_set_memberEquality_alt, 
because_Cache, 
unionElimination, 
minusEquality, 
imageMemberEquality, 
baseClosed, 
applyEquality, 
imageElimination, 
productIsType, 
addEquality, 
closedConclusion, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}[n:\mBbbN{}].  rn-prod-metric(n)  \mleq{}  r(n)*max-metric(n)
Date html generated:
2019_10_30-AM-08_37_46
Last ObjectModification:
2019_10_02-AM-11_03_13
Theory : reals
Home
Index