Nuprl Lemma : rn-prod-metric-le-max-metric

[n:ℕ]. rn-prod-metric(n) ≤ r(n)*max-metric(n)


Proof




Definitions occuring in Statement :  max-metric: max-metric(n) rn-prod-metric: rn-prod-metric(n) real-vec: ^n metric-leq: d1 ≤ d2 scale-metric: c*d int-to-real: r(n) nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rn-prod-metric: rn-prod-metric(n) metric-leq: d1 ≤ d2 mdist: mdist(d;x;y) prod-metric: prod-metric(k;d) scale-metric: c*d rmetric: rmetric() nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtract: m less_than': less_than'(a;b) decidable: Dec(P) or: P ∨ Q so_lambda: λ2x.t[x] so_apply: x[s] less_than: a < b squash: T true: True subtype_rel: A ⊆B metric: metric(X) real-vec: ^n int_seg: {i..j-} lelt: i ≤ j < k uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y guard: {T} max-metric: max-metric(n) bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b rev_implies:  Q iff: ⇐⇒ Q sq_stable: SqStable(P) req_int_terms: t1 ≡ t2
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv real-vec_wf istype-le subtract-1-ge-0 decidable__le intformnot_wf int_formula_prop_not_lemma istype-nat rsum-empty rmul-nonneg-case1 int-to-real_wf max-metric_wf rleq_weakening_equal metric-nonneg rsum_wf subtract_wf rabs_wf rsub_wf int_seg_properties decidable__lt itermAdd_wf itermSubtract_wf int_term_value_add_lemma int_term_value_subtract_lemma int_seg_wf radd_wf rmul_wf real-vec-subtype rleq_functionality rsum-split-last req_weakening rleq_functionality_wrt_implies radd_functionality_wrt_rleq primrec-unroll primrec_wf real_wf rmax_wf lt_int_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf less_than_wf rleq-rmax req-int subtract-add-cancel decidable__equal_int intformeq_wf int_formula_prop_eq_lemma rleq-int rleq_wf req_functionality radd-int rmul_functionality rmul_preserves_rleq2 sq_stable__rleq itermMultiply_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma rleq-implies-rleq real_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination independent_pairFormation universeIsType productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType dependent_set_memberEquality_alt because_Cache unionElimination minusEquality imageMemberEquality baseClosed applyEquality imageElimination productIsType addEquality closedConclusion equalityElimination equalityIstype promote_hyp instantiate cumulativity

Latex:
\mforall{}[n:\mBbbN{}].  rn-prod-metric(n)  \mleq{}  r(n)*max-metric(n)



Date html generated: 2019_10_30-AM-08_37_46
Last ObjectModification: 2019_10_02-AM-11_03_13

Theory : reals


Home Index