Nuprl Lemma : last-insert
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[L:T List]. ∀[x:T].  (last(insert(x;L)) = if null(L) then x else last(L) fi  ∈ T)
Proof
Definitions occuring in Statement : 
insert: insert(a;L), 
last: last(L), 
null: null(as), 
list: T List, 
deq: EqDecider(T), 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
nat: ℕ, 
implies: P ⇒ Q, 
false: False, 
ge: i ≥ j , 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
or: P ∨ Q, 
top: Top, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
squash: ↓T, 
sq_stable: SqStable(P), 
uiff: uiff(P;Q), 
and: P ∧ Q, 
le: A ≤ B, 
not: ¬A, 
less_than': less_than'(a;b), 
true: True, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
nil: [], 
it: ⋅, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
less_than: a < b, 
bfalse: ff, 
last: last(L), 
select: L[n], 
length: ||as||, 
list_ind: list_ind, 
insert: insert(a;L), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
nat_wf, 
colength_wf_list, 
list-cases, 
insert_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add-commutes, 
le_wf, 
equal_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
null_cons_lemma, 
list_wf, 
deq_wf, 
eval_list_sq, 
cons_wf, 
subtype_rel_list, 
top_wf, 
deq_member_cons_lemma, 
bor_wf, 
deq-member_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
last_wf, 
assert_elim, 
null_wf, 
member-implies-null-eq-bfalse, 
btrue_neq_bfalse, 
assert_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
l_member_wf, 
squash_wf, 
true_wf, 
last_cons, 
bfalse_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
cumulativity, 
applyEquality, 
unionElimination, 
voidEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
applyLambdaEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
addEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
minusEquality, 
equalityTransitivity, 
equalitySymmetry, 
intEquality, 
instantiate, 
universeEquality, 
equalityElimination, 
addLevel, 
levelHypothesis, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[L:T  List].  \mforall{}[x:T].
    (last(insert(x;L))  =  if  null(L)  then  x  else  last(L)  fi  )
Date html generated:
2017_04_14-AM-08_54_05
Last ObjectModification:
2017_02_27-PM-03_39_10
Theory : list_0
Home
Index