Nuprl Lemma : list_match-aux-cons
∀[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  SqStable(R[a;b]))
  ⇒ (∀bs:B List. ∀u:A. ∀v:A List. ∀used:ℤ List.
        (list-match-aux([u / v];bs;used;a,b.R[a;b])
        ⇐⇒ ∃j:ℕ||bs||. ((¬↑j ∈b used) ∧ R[u;bs[j]] ∧ list-match-aux(v;bs;[j / used];a,b.R[a;b])))))
Proof
Definitions occuring in Statement : 
list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]), 
select: L[n], 
length: ||as||, 
deq-member: x ∈b L, 
cons: [a / b], 
list: T List, 
int-deq: IntDeq, 
int_seg: {i..j-}, 
assert: ↑b, 
sq_stable: SqStable(P), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s1;s2], 
so_apply: x[s], 
prop: ℙ, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
so_lambda: λ2x y.t[x; y], 
rev_implies: P ⇐ Q, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]), 
sq_exists: ∃x:A [B[x]], 
le: A ≤ B, 
less_than': less_than'(a;b), 
nat_plus: ℕ+, 
true: True, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
sq_stable: SqStable(P), 
select: L[n], 
cons: [a / b], 
subtract: n - m, 
ge: i ≥ j , 
nat: ℕ, 
inject: Inj(A;B;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
nequal: a ≠ b ∈ T , 
label: ...$L... t
Lemmas referenced : 
deq-member_wf, 
int-deq_wf, 
list_wf, 
all_wf, 
sq_stable_wf, 
list-match-aux_wf, 
cons_wf, 
exists_wf, 
int_seg_wf, 
length_wf, 
not_wf, 
assert_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
length_of_cons_lemma, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
equal_wf, 
lelt_wf, 
assert-deq-member, 
l_member_wf, 
and_wf, 
squash_wf, 
le_wf, 
add-member-int_seg2, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
non_neg_length, 
nat_wf, 
nat_properties, 
decidable__equal_int, 
select-cons-tl, 
add-subtract-cancel, 
cons_member, 
inject_wf, 
sq_stable__and, 
sq_stable__inject, 
sq_stable__all, 
sq_stable__not, 
eq_int_wf, 
bool_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel_self, 
eqtt_to_assert, 
assert_of_eq_int, 
member_wf, 
set_subtype_base, 
int_subtype_base, 
select-cons-hd, 
select_cons_tl, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
intEquality, 
hypothesis, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_pairFormation, 
natural_numberEquality, 
productEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
productElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
dependent_set_memberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
addEquality, 
addLevel, 
impliesFunctionality, 
hyp_replacement, 
instantiate, 
dependent_set_memberFormation, 
equalityElimination, 
inlFormation, 
levelHypothesis, 
impliesLevelFunctionality, 
inrFormation
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    SqStable(R[a;b]))
    {}\mRightarrow{}  (\mforall{}bs:B  List.  \mforall{}u:A.  \mforall{}v:A  List.  \mforall{}used:\mBbbZ{}  List.
                (list-match-aux([u  /  v];bs;used;a,b.R[a;b])
                \mLeftarrow{}{}\mRightarrow{}  \mexists{}j:\mBbbN{}||bs||.  ((\mneg{}\muparrow{}j  \mmember{}\msubb{}  used)  \mwedge{}  R[u;bs[j]]  \mwedge{}  list-match-aux(v;bs;[j  /  used];a,b.R[a;b])))))
Date html generated:
2018_05_21-PM-00_47_06
Last ObjectModification:
2018_05_19-AM-06_54_51
Theory : list_1
Home
Index