Nuprl Lemma : exp-rem-property

[m:ℕ+]. ∀[n,i:ℕ].  (exp-rem(i;n;m) i^n rem m)


Proof




Definitions occuring in Statement :  exp-rem: exp-rem(i;n;m) exp: i^n nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m sqequal: t
Definitions unfolded in proof :  less_than': less_than'(a;b) squash: T less_than: a < b nequal: a ≠ b ∈  true: True int_nzero: -o exp: i^n remainder: rem m divide: n ÷ m exp-rem: exp-rem(i;n;m) sq_type: SQType(T) so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B or: P ∨ Q decidable: Dec(P) nat_plus: + le: A ≤ B lelt: i ≤ j < k int_seg: {i..j-} guard: {T} prop: and: P ∧ Q top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A uimplies: supposing a ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] uiff: uiff(P;Q) rev_implies:  Q iff: ⇐⇒ Q assert: b bnot: ¬bb bfalse: ff has-value: (a)↓ ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 int_upper: {i...}
Lemmas referenced :  nat_plus_wf istype-nat int_term_value_add_lemma itermAdd_wf div_mono1 div_bounds_1 nequal_wf divide_wfa nat_plus_inc_int_nzero remainder_wfa one-mul mul-commutes primrec1_lemma exp0_lemma subtype_rel_self istype-le decidable__lt decidable__le int_term_value_subtract_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma itermSubtract_wf intformeq_wf intformnot_wf int_subtype_base set_subtype_base subtype_base_sq subtract_wf decidable__equal_int subtract-1-ge-0 int_seg_wf nat_plus_properties int_seg_properties istype-less_than ge_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma istype-void int_formula_prop_and_lemma istype-int intformless_wf itermVar_wf itermConstant_wf intformle_wf intformand_wf full-omega-unsat nat_properties remainder_wf exp_add divide_wf mul_bounds_1a istype-universe true_wf squash_wf equal_wf nat_wf exp_wf2 le_wf false_wf int_term_value_mul_lemma itermMultiply_wf satisfiable-full-omega-tt add-is-int-iff multiply-is-int-iff equal-wf-base div_rem_sum exp2 iff_weakening_equal exp_mul int_upper_properties exp_wf4 neg_assert_of_eq_int assert-bnot bool_subtype_base bool_cases_sqequal eqff_to_assert less_than_wf exp-rem_wf int-value-type value-type-has-value assert_of_eq_int eqtt_to_assert bool_wf eq_int_wf zero-add nequal-le-implies int_upper_subtype_nat int_eq-as-ifthenelse rem_mul rem_bounds_1 exp1
Rules used in proof :  addEquality imageMemberEquality sqequalBase baseClosed Error :equalityIstype,  int_eqReduceFalseSq sqleReflexivity callbyvalueReduce intEquality cumulativity hypothesis_subsumption Error :productIsType,  Error :dependent_set_memberEquality_alt,  applyLambdaEquality equalitySymmetry equalityTransitivity because_Cache instantiate applyEquality unionElimination productElimination Error :functionIsTypeImplies,  Error :inhabitedIsType,  Error :isectIsTypeImplies,  axiomSqEquality Error :universeIsType,  independent_pairFormation sqequalRule voidElimination Error :isect_memberEquality_alt,  dependent_functionElimination int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation independent_isectElimination natural_numberEquality intWeakElimination rename setElimination hypothesis hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid Error :lambdaFormation_alt,  thin cut introduction Error :isect_memberFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution closedConclusion multiplyEquality universeEquality imageElimination hyp_replacement lambdaEquality computeAll voidEquality isect_memberEquality dependent_pairFormation baseApply promote_hyp pointwiseFunctionality remainderEquality lambdaFormation addLevel dependent_set_memberEquality divideEquality equalityElimination

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[n,i:\mBbbN{}].    (exp-rem(i;n;m)  \msim{}  i\^{}n  rem  m)



Date html generated: 2019_06_20-PM-02_32_20
Last ObjectModification: 2019_03_10-AM-10_28_06

Theory : num_thy_1


Home Index