Nuprl Lemma : permutation-iff-count

[T:Type]
  ∀eq:EqDecider(T). ∀a1,b1:T List.
    (∀x:T. (||filter(eqof(eq) x;a1)|| ||filter(eqof(eq) x;b1)|| ∈ ℤ⇐⇒ permutation(T;a1;b1))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) length: ||as|| filter: filter(P;l) list: List eqof: eqof(d) deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q apply: a int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: implies:  Q subtype_rel: A ⊆B so_apply: x[s] uimplies: supposing a istype: istype(T) nat: eqof: eqof(d) top: Top deq: EqDecider(T) ge: i ≥  false: False le: A ≤ B and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b decidable: Dec(P) append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cand: c∧ B label: ...$L... t permutation: permutation(T;L1;L2)
Lemmas referenced :  list_induction list_wf equal-wf-base length_wf_nat filter_wf5 eqof_wf subtype_rel_dep_function bool_wf l_member_wf set_subtype_base le_wf istype-int int_subtype_base permutation_wf nil_wf permutation-nil cons_wf deq_wf istype-universe filter_nil_lemma istype-void filter_cons_lemma length_of_nil_lemma length_of_cons_lemma non_neg_length full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf assert_wf bnot_wf not_wf member_wf istype-assert bool_cases subtype_base_sq bool_subtype_base eqtt_to_assert safe-assert-deq eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot bool_cases_sqequal assert-bnot equal_wf permutation-cons2 decidable__equal_int add-is-int-iff intformnot_wf int_formula_prop_not_lemma false_wf member-exists2 decidable__lt intformless_wf int_formula_prop_less_lemma member_filter l_member_decomp append_wf istype-nat list_ind_cons_lemma list_ind_nil_lemma equal-wf-T-base uiff_transitivity length-append length_wf filter_append_sq permutation-swap-first2 permutation_inversion permutation_transitivity permutation-rotate set_wf subtype_rel_self all_wf permutation-filter permutation-length permute_list_wf int_seg_wf inject_wf nat_wf subtype_rel_list
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality_alt functionEquality hypothesis intEquality applyEquality because_Cache inhabitedIsType setEquality setIsType universeIsType independent_isectElimination setElimination rename natural_numberEquality independent_functionElimination functionIsType equalityIstype sqequalBase equalitySymmetry dependent_functionElimination instantiate universeEquality isect_memberEquality_alt voidElimination equalityTransitivity productElimination approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation unionElimination cumulativity equalityElimination promote_hyp hyp_replacement applyLambdaEquality pointwiseFunctionality baseApply closedConclusion baseClosed dependent_set_memberEquality_alt productIsType addEquality lambdaEquality lambdaFormation isect_memberFormation functionExtensionality productEquality dependent_set_memberEquality dependent_pairFormation

Latex:
\mforall{}[T:Type]
    \mforall{}eq:EqDecider(T).  \mforall{}a1,b1:T  List.
        (\mforall{}x:T.  (||filter(eqof(eq)  x;a1)||  =  ||filter(eqof(eq)  x;b1)||)  \mLeftarrow{}{}\mRightarrow{}  permutation(T;a1;b1))



Date html generated: 2019_10_16-AM-11_30_19
Last ObjectModification: 2019_06_27-PM-05_26_52

Theory : bags_2


Home Index