Nuprl Lemma : divisibility-by-5-rule

n:ℕ+. ∀a:ℕn ⟶ ℤ.  (5 | Σi<n.a[i]*10^i ⇐⇒ a[0])


Proof




Definitions occuring in Statement :  power-sum: Σi<n.a[i]*x^i divides: a int_seg: {i..j-} nat_plus: + so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat_plus: + eqmod: a ≡ mod m divides: a exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtract: m prop: false: False subtype_rel: A ⊆B power-sum: Σi<n.a[i]*x^i so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) not: ¬A implies:  Q rev_implies:  Q sq_type: SQType(T) guard: {T} squash: T true: True nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff bnot: ¬bb assert: b nequal: a ≠ b ∈ 
Lemmas referenced :  int_seg_wf nat_plus_wf nat_plus_properties decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermSubtract_wf itermConstant_wf itermMultiply_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_formula_prop_wf equal-wf-base int_subtype_base power-sum_wf nat_plus_subtype_nat eqmod_wf iff_wf false_wf decidable__lt intformand_wf intformless_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma lelt_wf eqmod_functionality_wrt_eqmod power-sum_functionality_wrt_eqmod eqmod_weakening subtype_base_sq isolate_summand exp_wf2 int_seg_subtype_nat equal_wf squash_wf true_wf iff_weakening_equal exp0_lemma sum_wf nat_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int zero_ann_a exp-zero not-lt-2 not-equal-2 add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less_than_wf equal-wf-T-base itermAdd_wf int_term_value_add_lemma add_functionality_wrt_eq sum_constant divides_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut functionEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis intEquality dependent_pairFormation dependent_functionElimination because_Cache unionElimination independent_isectElimination lambdaEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll baseClosed baseApply closedConclusion applyEquality functionExtensionality productElimination dependent_set_memberEquality independent_pairFormation int_eqEquality addLevel impliesFunctionality independent_functionElimination instantiate cumulativity equalityTransitivity equalitySymmetry multiplyEquality imageElimination universeEquality imageMemberEquality equalityElimination promote_hyp inrFormation addEquality minusEquality

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}a:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}.    (5  |  \mSigma{}i<n.a[i]*10\^{}i  \mLeftarrow{}{}\mRightarrow{}  5  |  a[0])



Date html generated: 2018_05_21-PM-08_31_58
Last ObjectModification: 2017_07_26-PM-05_58_20

Theory : general


Home Index