Nuprl Lemma : exp-rem-property

[m:ℕ+]. ∀[n,i:ℕ].  (exp-rem(i;n;m) i^n rem m)


Proof




Definitions occuring in Statement :  exp-rem: exp-rem(i;n;m) exp: i^n nat_plus: + nat: uall: [x:A]. B[x] remainder: rem m sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} nat_plus: + lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] exp-rem: exp-rem(i;n;m) sq_type: SQType(T) exp: i^n nequal: a ≠ b ∈  true: True less_than: a < b squash: T int_nzero: -o uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q int_upper: {i...} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  has-value: (a)↓ bfalse: ff bnot: ¬bb assert: b
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties nat_plus_properties decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma decidable__equal_int int_seg_subtype false_wf set_wf lelt_wf intformeq_wf int_formula_prop_eq_lemma le_wf subtype_base_sq int_subtype_base exp0_lemma primrec1_lemma mul-commutes one-mul equal-wf-base true_wf div_bounds_1 div_mono1 decidable__lt itermAdd_wf int_term_value_add_lemma nat_wf nat_plus_wf mul_bounds_1a divide_wf exp_add remainder_wf equal_wf squash_wf exp_wf2 div_rem_sum nequal_wf multiply-is-int-iff add-is-int-iff itermMultiply_wf int_term_value_mul_lemma two-mul iff_weakening_equal int_eq-as-ifthenelse int_upper_subtype_nat nequal-le-implies zero-add eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int value-type-has-value int-value-type exp-rem_wf eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int exp_wf4 int_upper_properties rem_mul rem_bounds_1 exp1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom because_Cache productElimination unionElimination applyEquality equalityTransitivity equalitySymmetry hypothesis_subsumption dependent_set_memberEquality instantiate cumulativity callbyvalueReduce sqleReflexivity int_eqReduceFalseSq remainderEquality baseClosed divideEquality addLevel imageMemberEquality addEquality hyp_replacement imageElimination universeEquality pointwiseFunctionality promote_hyp baseApply closedConclusion multiplyEquality equalityEquality equalityElimination

Latex:
\mforall{}[m:\mBbbN{}\msupplus{}].  \mforall{}[n,i:\mBbbN{}].    (exp-rem(i;n;m)  \msim{}  i\^{}n  rem  m)



Date html generated: 2016_10_25-AM-11_00_19
Last ObjectModification: 2016_07_12-AM-07_08_01

Theory : general


Home Index