Nuprl Lemma : cross-product-non-zero-implies

r:IntegDom{i}
  ((∀x,y:|r|.  Dec(x y ∈ |r|))
   (∀a:{a:ℕ3 ⟶ |r|| ¬(a 0 ∈ (ℕ3 ⟶ |r|))} . ∀b:{b:ℕ3 ⟶ |r|| 
                                                    (b 0 ∈ (ℕ3 ⟶ |r|))) ∧ ((a b) 0 ∈ (ℕ3 ⟶ |r|)))} .
        (∃l:{p:ℕ3 ⟶ |r|| ¬(p 0 ∈ (ℕ3 ⟶ |r|))}  [(((a l) 0 ∈ |r|) ∧ ((b l) 0 ∈ |r|)))])))


Proof




Definitions occuring in Statement :  scalar-product: (a b) cross-product: (a b) zero-vector: 0 int_seg: {i..j-} decidable: Dec(P) all: x:A. B[x] sq_exists: x:A [B[x]] not: ¬A implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T integ_dom: IntegDom{i} rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False uall: [x:A]. B[x] member: t ∈ T integ_dom: IntegDom{i} crng: CRng rng: Rng sq_stable: SqStable(P) squash: T and: P ∧ Q rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q exists: x:A. B[x] prop: decidable: Dec(P) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than: a < b nat: less_than': less_than'(a;b) cand: c∧ B subtype_rel: A ⊆B infix_ap: y true: True uimplies: supposing a guard: {T} so_apply: x[s] so_lambda: λ2x.t[x] sq_type: SQType(T) vector-mul: (c*a) top: Top satisfiable_int_formula: satisfiable_int_formula(fmla) sq_exists: x:A [B[x]] bfalse: ff ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 bnot: ¬bb zero-vector: 0 uiff: uiff(P;Q) eq_int: (i =z j) integ_dom_p: IsIntegDom(r) nequal: a ≠ b ∈ 
Lemmas referenced :  sq_stable__and not_wf equal_wf int_seg_wf rng_car_wf zero-vector_wf cross-product_wf istype-void sq_stable__not cross-product-equal-zero rng_zero_wf vector-mul_wf decidable_wf integ_dom_wf decidable__equal_compact_domain compact-finite istype-le non-zero-component_wf rng_plus_wf rng_minus_wf iff_weakening_equal rng_plus_inv infix_ap_wf squash_wf true_wf istype-universe rng_plus_assoc subtype_rel_self rng_plus_comm rng_plus_zero decidable__not decidable__cand and_wf decidable__exists_int_seg int_subtype_base set_subtype_base subtype_base_sq int-value-type istype-int lelt_wf set-value-type rng_times_wf crng_times_comm int_formula_prop_wf int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermConstant_wf intformle_wf intformnot_wf full-omega-unsat decidable__le int_seg_properties scalar-product_wf ifthenelse_wf eq_int_wf btrue_neq_bfalse assert_elim bool_subtype_base bfalse_wf btrue_wf eq_int_eq_true bool_wf istype-assert equal-wf-base bnot_wf assert_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformand_wf bool_cases eqtt_to_assert assert_of_eq_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot rng_minus_minus rng_minus_zero int_seg_cases int_seg_subtype_special istype-less_than int_formula_prop_less_lemma intformless_wf decidable__lt decidable__equal_int scalar-product-3 rng_times_over_minus rng_times_zero rng_plus_ac_1 rng_plus_inv_assoc rng_one_wf rng_times_one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt setElimination thin rename cut hypothesis sqequalHypSubstitution independent_functionElimination voidElimination because_Cache introduction extract_by_obid isectElimination functionEquality natural_numberEquality hypothesisEquality isect_memberEquality_alt sqequalRule functionIsType equalityIstype inhabitedIsType lambdaEquality_alt dependent_functionElimination functionIsTypeImplies imageMemberEquality baseClosed imageElimination productElimination unionIsType productIsType applyEquality setIsType universeIsType unionElimination inlFormation_alt equalityTransitivity equalitySymmetry inrFormation_alt dependent_set_memberEquality_alt independent_pairFormation dependent_pairFormation_alt independent_isectElimination applyLambdaEquality instantiate universeEquality cumulativity promote_hyp intEquality cutEval functionExtensionality sqequalBase approximateComputation dependent_set_memberFormation_alt equalityElimination closedConclusion baseApply int_eqEquality hypothesis_subsumption

Latex:
\mforall{}r:IntegDom\{i\}
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}a:\{a:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  .  \mforall{}b:\{b:\mBbbN{}3  {}\mrightarrow{}  |r||  (\mneg{}(b  =  0))  \mwedge{}  (\mneg{}((a  x  b)  =  0))\}  .
                (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}    [(((a  .  l)  =  0)  \mwedge{}  (\mneg{}((b  .  l)  =  0)))])))



Date html generated: 2020_05_20-AM-09_03_55
Last ObjectModification: 2019_12_26-PM-04_06_30

Theory : matrices


Home Index