Nuprl Lemma : cross-product-non-zero-implies
∀r:IntegDom{i}
  ((∀x,y:|r|.  Dec(x = y ∈ |r|))
  
⇒ (∀a:{a:ℕ3 ⟶ |r|| ¬(a = 0 ∈ (ℕ3 ⟶ |r|))} . ∀b:{b:ℕ3 ⟶ |r|| 
                                                    (¬(b = 0 ∈ (ℕ3 ⟶ |r|))) ∧ (¬((a x b) = 0 ∈ (ℕ3 ⟶ |r|)))} .
        (∃l:{p:ℕ3 ⟶ |r|| ¬(p = 0 ∈ (ℕ3 ⟶ |r|))}  [(((a . l) = 0 ∈ |r|) ∧ (¬((b . l) = 0 ∈ |r|)))])))
Proof
Definitions occuring in Statement : 
scalar-product: (a . b)
, 
cross-product: (a x b)
, 
zero-vector: 0
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:A [B[x]]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
integ_dom: IntegDom{i}
, 
rng_zero: 0
, 
rng_car: |r|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
false: False
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
integ_dom: IntegDom{i}
, 
crng: CRng
, 
rng: Rng
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
less_than: a < b
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
cand: A c∧ B
, 
subtype_rel: A ⊆r B
, 
infix_ap: x f y
, 
true: True
, 
uimplies: b supposing a
, 
guard: {T}
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
sq_type: SQType(T)
, 
vector-mul: (c*a)
, 
top: Top
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
sq_exists: ∃x:A [B[x]]
, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
bnot: ¬bb
, 
zero-vector: 0
, 
uiff: uiff(P;Q)
, 
eq_int: (i =z j)
, 
integ_dom_p: IsIntegDom(r)
, 
nequal: a ≠ b ∈ T 
Lemmas referenced : 
sq_stable__and, 
not_wf, 
equal_wf, 
int_seg_wf, 
rng_car_wf, 
zero-vector_wf, 
cross-product_wf, 
istype-void, 
sq_stable__not, 
cross-product-equal-zero, 
rng_zero_wf, 
vector-mul_wf, 
decidable_wf, 
integ_dom_wf, 
decidable__equal_compact_domain, 
compact-finite, 
istype-le, 
non-zero-component_wf, 
rng_plus_wf, 
rng_minus_wf, 
iff_weakening_equal, 
rng_plus_inv, 
infix_ap_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rng_plus_assoc, 
subtype_rel_self, 
rng_plus_comm, 
rng_plus_zero, 
decidable__not, 
decidable__cand, 
and_wf, 
decidable__exists_int_seg, 
int_subtype_base, 
set_subtype_base, 
subtype_base_sq, 
int-value-type, 
istype-int, 
lelt_wf, 
set-value-type, 
rng_times_wf, 
crng_times_comm, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__le, 
int_seg_properties, 
scalar-product_wf, 
ifthenelse_wf, 
eq_int_wf, 
btrue_neq_bfalse, 
assert_elim, 
bool_subtype_base, 
bfalse_wf, 
btrue_wf, 
eq_int_eq_true, 
bool_wf, 
istype-assert, 
equal-wf-base, 
bnot_wf, 
assert_wf, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
intformeq_wf, 
intformand_wf, 
bool_cases, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
rng_minus_minus, 
rng_minus_zero, 
int_seg_cases, 
int_seg_subtype_special, 
istype-less_than, 
int_formula_prop_less_lemma, 
intformless_wf, 
decidable__lt, 
decidable__equal_int, 
scalar-product-3, 
rng_times_over_minus, 
rng_times_zero, 
rng_plus_ac_1, 
rng_plus_inv_assoc, 
rng_one_wf, 
rng_times_one
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
setElimination, 
thin, 
rename, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
independent_functionElimination, 
voidElimination, 
because_Cache, 
introduction, 
extract_by_obid, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
hypothesisEquality, 
isect_memberEquality_alt, 
sqequalRule, 
functionIsType, 
equalityIstype, 
inhabitedIsType, 
lambdaEquality_alt, 
dependent_functionElimination, 
functionIsTypeImplies, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
productElimination, 
unionIsType, 
productIsType, 
applyEquality, 
setIsType, 
universeIsType, 
unionElimination, 
inlFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation_alt, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
dependent_pairFormation_alt, 
independent_isectElimination, 
applyLambdaEquality, 
instantiate, 
universeEquality, 
cumulativity, 
promote_hyp, 
intEquality, 
cutEval, 
functionExtensionality, 
sqequalBase, 
approximateComputation, 
dependent_set_memberFormation_alt, 
equalityElimination, 
closedConclusion, 
baseApply, 
int_eqEquality, 
hypothesis_subsumption
Latex:
\mforall{}r:IntegDom\{i\}
    ((\mforall{}x,y:|r|.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}a:\{a:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(a  =  0)\}  .  \mforall{}b:\{b:\mBbbN{}3  {}\mrightarrow{}  |r||  (\mneg{}(b  =  0))  \mwedge{}  (\mneg{}((a  x  b)  =  0))\}  .
                (\mexists{}l:\{p:\mBbbN{}3  {}\mrightarrow{}  |r||  \mneg{}(p  =  0)\}    [(((a  .  l)  =  0)  \mwedge{}  (\mneg{}((b  .  l)  =  0)))])))
Date html generated:
2020_05_20-AM-09_03_55
Last ObjectModification:
2019_12_26-PM-04_06_30
Theory : matrices
Home
Index