Nuprl Lemma : open-expectation-monotone

[p:FinProbSpace]. ∀[n,m:ℕ].  ∀[C:p-open(p)]. (E(n;λs.(C <n, s>)) ≤ E(m;λs.(C <m, s>))) supposing n ≤ m


Proof




Definitions occuring in Statement :  p-open: p-open(p) expectation: E(n;F) finite-prob-space: FinProbSpace nat: uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B apply: a lambda: λx.A[x] pair: <a, b>
Lemmas :  expectation-constant false_wf le_wf null-seq_wf p-outcome_wf int_seg_wf length_wf rationals_wf expectation-monotone Error :qle_wf,  expectation_wf subtype_rel_set lelt_wf int-subtype-rationals Error :qle-int,  subtype_base_sq int_subtype_base sq_stable__le subtype_rel_dep_function subtype_rel-int_seg less_than_transitivity1 less_than_irreflexivity le_weakening lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot less_than_wf decidable__equal_int natural_number_wf_p-outcome int_upper_subtype_nat nat_properties nequal-le-implies zero-add nat_wf decidable__lt not-equal-2 add_functionality_wrt_le add-associates add-zero le-add-cancel condition-implies-le add-commutes minus-add minus-zero eq_int_wf equal-wf-base assert_wf bnot_wf not_wf equal-wf-T-base uiff_transitivity assert_of_eq_int iff_transitivity iff_weakening_uiff assert_of_bnot ws-monotone subtract_wf decidable__le not-le-2 less-iff-le minus-one-mul minus-minus add-swap rv-shift_wf le_weakening2 sq_stable_from_decidable Error :decidable__qle,  l_all_iff l_member_wf le-add-cancel-alt zero-le-nat non_neg_length length_wf_nat cons-seq_wf int_seg_properties int_seg_subtype-nat subtype_rel_self neg_assert_of_eq_int le-add-cancel2 all_wf trivial-int-eq1
\mforall{}[p:FinProbSpace].  \mforall{}[n,m:\mBbbN{}].    \mforall{}[C:p-open(p)].  (E(n;\mlambda{}s.(C  <n,  s>))  \mleq{}  E(m;\mlambda{}s.(C  <m,  s>)))  supposing  n  \000C\mleq{}  m



Date html generated: 2015_07_17-AM-08_00_07
Last ObjectModification: 2015_01_27-AM-11_24_09

Home Index