Nuprl Lemma : ctt-subterm-context_wf

[ctxt:CubicalContext]. ∀[f:CttOp]. ∀[n:ℕ]. ∀[vs:varname() List].
[m:Provisional''''(cttTerm(fst(ctxt))) 
    supposing ↑(((ctt-opr-is(f;"Glue") ∨bctt-opr-is(f;"case") ∨bctt-opr-is(f;"unglue")) ∧b ((n =z 2) ∨b(n =z 3)))
    ∨b(ctt-opr-is(f;"comp") ∧b (n =z 2))
    ∨b(ctt-opr-is(f;"glue") ∧b ((n =z 2) ∨b(n =z 3) ∨b(n =z 4)))) ⋂ Provisional''''(ctt-type-meaning1{i:l}(fst(ctxt))) 
                                                                    supposing ↑((ctt-opr-is(f;"pi")
                                                                    ∨bctt-opr-is(f;"sigma")
                                                                    ∨bctt-opr-is(f;"lambda")
                                                                    ∨bctt-opr-is(f;"apply")
                                                                    ∨bctt-opr-is(f;"pair")
                                                                    ∨bctt-opr-is(f;"fst")
                                                                    ∨bctt-opr-is(f;"snd"))
                                                                    ∧b (n =z 1))].
  ctt-subterm-context{i:l}(ctxt;f;n;vs;m) ∈ ?CubicalContext 
  supposing (↑(((ctt-opr-is(f;"pi")
  ∨bctt-opr-is(f;"sigma")
  ∨bctt-opr-is(f;"lambda")
  ∨bctt-opr-is(f;"apply")
  ∨bctt-opr-is(f;"pair")
  ∨bctt-opr-is(f;"fst")
  ∨bctt-opr-is(f;"snd")
  ∨bctt-opr-is(f;"pathabs")
  ∨bctt-opr-is(f;"comp"))
  ∧b (n =z 1))
  ∨b(ctt-opr-is(f;"comp") ∧b (n =z 2))))
   0 < ||vs||


Proof




Definitions occuring in Statement :  ctt-subterm-context: ctt-subterm-context{i:l}(ctxt;f;n;vs;m) ctt-opr-is: ctt-opr-is(f;s) ctt-op: CttOp cubical-context: ?CubicalContext cubical_context: CubicalContext ctt-type-meaning1: ctt-type-meaning1{i:l}(X) ctt-term-meaning: cttTerm(X) varname: varname() length: ||as|| list: List isect2: T1 ⋂ T2 bor: p ∨bq band: p ∧b q nat: assert: b eq_int: (i =z j) less_than: a < b uimplies: supposing a uall: [x:A]. B[x] pi1: fst(t) implies:  Q member: t ∈ T natural_number: $n token: "$token" provisional-type: Provisional(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T cubical_context: CubicalContext all: x:A. B[x] implies:  Q pi1: fst(t) ctt-op: CttOp iff: ⇐⇒ Q and: P ∧ Q or: P ∨ Q sq_type: SQType(T) guard: {T} eq_atom: =a y ifthenelse: if then else fi  btrue: tt prop: ctt-tokens: ctt-tokens() ctt-subterm-context: ctt-subterm-context{i:l}(ctxt;f;n;vs;m) cubical-context: ?CubicalContext ctt-opr-is: ctt-opr-is(f;s) band: p ∧b q bor: p ∨bq bfalse: ff uiff: uiff(P;Q) nat: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] eq_int: (i =z j) assert: b cand: c∧ B true: True exists: x:A. B[x] bnot: ¬bb false: False not: ¬A rev_implies:  Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) less_than: a < b squash: T le: A ≤ B less_than': less_than'(a;b) int_seg: {i..j-} lelt: i ≤ j < k ctt-level-type: {X ⊢lvl _} bool: 𝔹 unit: Unit it:
Lemmas referenced :  cons_member cons_wf nil_wf subtype_base_sq atom_subtype_base provision_wf cubical_context_wf true_wf istype-true member_singleton istype-assert bor_wf ctt-opr-is_wf bool_cases bool_subtype_base eqtt_to_assert band_wf btrue_wf eq_int_wf bfalse_wf bool_wf istype-less_than length_wf varname_wf isect2_wf assert_wf provisional-type_wf ctt-term-meaning_wf pi1_wf_top cubical_set_wf ctt-type-meaning1_wf list_wf istype-nat ctt-op_wf equal-wf-base set_subtype_base le_wf istype-int int_subtype_base isect2_decomp false_wf restrict-cubical-context_wf isect2_subtype_rel3 uimplies_subtype subtype_rel_wf subtype_rel_self bnot_wf bool_cases_sqequal eqff_to_assert assert-bnot neg_assert_of_eq_int not_wf iff_transitivity iff_weakening_uiff assert_of_bnot assert_of_eq_int istype-void nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf update-cubical-context2_wf hd_wf decidable__le intformle_wf intformless_wf int_formula_prop_le_lemma int_formula_prop_less_lemma update-cubical-context_wf int_seg_wf ctt-level-type_wf int_seg_subtype_nat istype-false subtype_rel_universe1 decidable__lt istype-le interval-type_wf int_seg_properties update-provisional-context-I_wf assert_of_bor bnot_thru_bor assert_of_band uiff_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut sqequalHypSubstitution productElimination thin independent_pairEquality hypothesisEquality inhabitedIsType hypothesis lambdaFormation_alt sqequalRule equalityIstype equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination setElimination rename introduction extract_by_obid isectElimination atomEquality tokenEquality unionElimination instantiate cumulativity independent_isectElimination isect_memberEquality_alt functionIsType closedConclusion because_Cache natural_numberEquality universeIsType isectEquality Error :memTop,  baseApply baseClosed applyEquality intEquality lambdaEquality_alt unionEquality sqequalBase unionIsType independent_pairFormation inlFormation_alt dependent_pairFormation_alt promote_hyp voidElimination productEquality productIsType approximateComputation int_eqEquality imageElimination universeEquality dependent_pairEquality_alt dependent_set_memberEquality_alt equalityElimination inrFormation_alt

Latex:
\mforall{}[ctxt:CubicalContext].  \mforall{}[f:CttOp].  \mforall{}[n:\mBbbN{}].  \mforall{}[vs:varname()  List].
\mforall{}[m:Provisional''''(cttTerm(fst(ctxt))) 
        supposing  \muparrow{}(((ctt-opr-is(f;"Glue")  \mvee{}\msubb{}ctt-opr-is(f;"case")  \mvee{}\msubb{}ctt-opr-is(f;"unglue"))
                                \mwedge{}\msubb{}  ((n  =\msubz{}  2)  \mvee{}\msubb{}(n  =\msubz{}  3)))
        \mvee{}\msubb{}(ctt-opr-is(f;"comp")  \mwedge{}\msubb{}  (n  =\msubz{}  2))
        \mvee{}\msubb{}(ctt-opr-is(f;"glue")
            \mwedge{}\msubb{}  ((n  =\msubz{}  2)  \mvee{}\msubb{}(n  =\msubz{}  3)  \mvee{}\msubb{}(n  =\msubz{}  4))))  \mcap{}  Provisional''''(ctt-type-meaning1\{i:l\}(fst(ctxt))) 
                                                                                            supposing  \muparrow{}((ctt-opr-is(f;"pi")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"sigma")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"lambda")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"apply")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"pair")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"fst")
                                                                                            \mvee{}\msubb{}ctt-opr-is(f;"snd"))
                                                                                            \mwedge{}\msubb{}  (n  =\msubz{}  1))].
    ctt-subterm-context\{i:l\}(ctxt;f;n;vs;m)  \mmember{}  ?CubicalContext 
    supposing  (\muparrow{}(((ctt-opr-is(f;"pi")
    \mvee{}\msubb{}ctt-opr-is(f;"sigma")
    \mvee{}\msubb{}ctt-opr-is(f;"lambda")
    \mvee{}\msubb{}ctt-opr-is(f;"apply")
    \mvee{}\msubb{}ctt-opr-is(f;"pair")
    \mvee{}\msubb{}ctt-opr-is(f;"fst")
    \mvee{}\msubb{}ctt-opr-is(f;"snd")
    \mvee{}\msubb{}ctt-opr-is(f;"pathabs")
    \mvee{}\msubb{}ctt-opr-is(f;"comp"))
    \mwedge{}\msubb{}  (n  =\msubz{}  1))
    \mvee{}\msubb{}(ctt-opr-is(f;"comp")  \mwedge{}\msubb{}  (n  =\msubz{}  2))))
    {}\mRightarrow{}  0  <  ||vs||



Date html generated: 2020_05_21-AM-10_37_08
Last ObjectModification: 2020_05_18-AM-11_26_02

Theory : cubical!type!theory


Home Index