Nuprl Lemma : ip-five-segment
∀[rv:InnerProductSpace]. ∀[a,b,c,d,A,B,C,D:Point].
  (cd=CD) supposing (bd=BD and ad=AD and bc=BC and ab=AB and A_B_C and a_b_c and a # b)
Proof
Definitions occuring in Statement : 
ip-between: a_b_c
, 
ip-congruent: ab=cd
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
ip-congruent: ab=cd
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
ss-eq: x ≡ y
, 
stable: Stable{P}
, 
not: ¬A
, 
or: P ∨ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
exists: ∃x:A. B[x]
, 
let: let, 
top: Top
, 
rev_implies: P 
⇐ Q
, 
rsub: x - y
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
nat: ℕ
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rneq: x ≠ y
, 
req: x = y
, 
rge: x ≥ y
Lemmas referenced : 
ip-dist-between, 
req_witness, 
rv-norm_wf, 
rv-sub_wf, 
inner-product-space_subtype, 
real_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
ip-congruent_wf, 
ip-between_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
stable_req, 
false_wf, 
or_wf, 
not_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
ip-between-iff, 
ss-sep-symmetry, 
ip-five-segment-lemma, 
member_rooint_lemma, 
radd-preserves-rless, 
rsub_wf, 
radd_wf, 
rminus_wf, 
rless_wf, 
rless_functionality, 
radd-rminus-assoc, 
req_weakening, 
radd_functionality, 
radd_comm, 
radd-int, 
rnexp-req-iff, 
less_than_wf, 
rv-norm-nonneg, 
rnexp_wf, 
le_wf, 
req_functionality, 
rnexp_functionality, 
rv-norm-sub, 
rdiv_wf, 
rmul_functionality, 
ip-dist-between-2, 
rv-add_wf, 
rv-mul_wf, 
rabs_wf, 
rv-norm_functionality, 
rv-sub_functionality, 
ss-eq_inversion, 
ss-eq_weakening, 
rv-norm-positive, 
rv-sep-iff, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
radd_functionality_wrt_rleq, 
radd-zero-both, 
equal_wf, 
rmul_preserves_req, 
req_inversion, 
req_transitivity, 
rleq_weakening_rless, 
rabs-of-nonneg, 
rdiv_functionality, 
rsub_functionality, 
ip-congruent-same2, 
ip-congruent_functionality, 
ip-congruent-same
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
promote_hyp, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
because_Cache, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
functionEquality, 
lambdaFormation, 
unionElimination, 
voidElimination, 
dependent_functionElimination, 
productElimination, 
voidEquality, 
addEquality, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
inlFormation, 
inrFormation
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d,A,B,C,D:Point].
    (cd=CD)  supposing  (bd=BD  and  ad=AD  and  bc=BC  and  ab=AB  and  A\_B\_C  and  a\_b\_c  and  a  \#  b)
Date html generated:
2017_10_05-AM-00_03_24
Last ObjectModification:
2017_03_11-PM-06_35_32
Theory : inner!product!spaces
Home
Index