Nuprl Lemma : ip-five-segment

[rv:InnerProductSpace]. ∀[a,b,c,d,A,B,C,D:Point].
  (cd=CD) supposing (bd=BD and ad=AD and bc=BC and ab=AB and A_B_C and a_b_c and b)


Proof




Definitions occuring in Statement :  ip-between: a_b_c ip-congruent: ab=cd inner-product-space: InnerProductSpace ss-sep: y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a ip-congruent: ab=cd subtype_rel: A ⊆B and: P ∧ Q prop: implies:  Q guard: {T} ss-eq: x ≡ y stable: Stable{P} not: ¬A or: P ∨ Q false: False all: x:A. B[x] iff: ⇐⇒ Q exists: x:A. B[x] let: let top: Top rev_implies:  Q rsub: y nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True nat: le: A ≤ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rneq: x ≠ y req: y rge: x ≥ y
Lemmas referenced :  ip-dist-between req_witness rv-norm_wf rv-sub_wf inner-product-space_subtype real_wf rleq_wf int-to-real_wf req_wf rmul_wf rv-ip_wf ip-congruent_wf ip-between_wf ss-sep_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf stable_req false_wf or_wf not_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle ip-between-iff ss-sep-symmetry ip-five-segment-lemma member_rooint_lemma radd-preserves-rless rsub_wf radd_wf rminus_wf rless_wf rless_functionality radd-rminus-assoc req_weakening radd_functionality radd_comm radd-int rnexp-req-iff less_than_wf rv-norm-nonneg rnexp_wf le_wf req_functionality rnexp_functionality rv-norm-sub rdiv_wf rmul_functionality ip-dist-between-2 rv-add_wf rv-mul_wf rabs_wf rv-norm_functionality rv-sub_functionality ss-eq_inversion ss-eq_weakening rv-norm-positive rv-sep-iff rless_functionality_wrt_implies rleq_weakening_equal radd_functionality_wrt_rleq radd-zero-both equal_wf rmul_preserves_req req_inversion req_transitivity rleq_weakening_rless rabs-of-nonneg rdiv_functionality rsub_functionality ip-congruent-same2 ip-congruent_functionality ip-congruent-same
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis promote_hyp sqequalRule applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality because_Cache independent_functionElimination isect_memberEquality equalityTransitivity equalitySymmetry instantiate functionEquality lambdaFormation unionElimination voidElimination dependent_functionElimination productElimination voidEquality addEquality addLevel levelHypothesis dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed inlFormation inrFormation

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[a,b,c,d,A,B,C,D:Point].
    (cd=CD)  supposing  (bd=BD  and  ad=AD  and  bc=BC  and  ab=AB  and  A\_B\_C  and  a\_b\_c  and  a  \#  b)



Date html generated: 2017_10_05-AM-00_03_24
Last ObjectModification: 2017_03_11-PM-06_35_32

Theory : inner!product!spaces


Home Index