Nuprl Lemma : ip-line-circle-lemma
∀rv:InnerProductSpace. ∀r:ℝ. ∀p,q:Point.
  (p # q
  
⇒ (||p|| ≤ r)
  
⇒ let v = q - p in
         (r0 ≤ (((r(2) * p ⋅ v) * r(2) * p ⋅ v) - r(4) * ||v||^2 * (||p||^2 - r^2)))
         ∧ (||p + quadratic1(||v||^2;r(2) * p ⋅ v;||p||^2 - r^2)*v|| = r)
         ∧ (||p + quadratic2(||v||^2;r(2) * p ⋅ v;||p||^2 - r^2)*v|| = r))
Proof
Definitions occuring in Statement : 
rv-norm: ||x||
, 
rv-sub: x - y
, 
rv-ip: x ⋅ y
, 
inner-product-space: InnerProductSpace
, 
rv-mul: a*x
, 
rv-add: x + y
, 
quadratic2: quadratic2(a;b;c)
, 
quadratic1: quadratic1(a;b;c)
, 
rleq: x ≤ y
, 
rnexp: x^k1
, 
rsub: x - y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
ss-sep: x # y
, 
ss-point: Point
, 
let: let, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
guard: {T}
, 
uimplies: b supposing a
, 
rsub: x - y
, 
not: ¬A
, 
false: False
, 
less_than': less_than'(a;b)
, 
le: A ≤ B
, 
nat: ℕ
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rge: x ≥ y
, 
rnonneg: rnonneg(x)
, 
rleq: x ≤ y
, 
iff: P 
⇐⇒ Q
, 
let: let, 
rev_implies: P 
⇐ Q
, 
real: ℝ
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
or: P ∨ Q
, 
rneq: x ≠ y
Lemmas referenced : 
rleq_wf, 
rv-norm_wf, 
real_wf, 
int-to-real_wf, 
req_wf, 
rmul_wf, 
rv-ip_wf, 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-point_wf, 
radd-zero-both, 
req_weakening, 
radd-rminus-both, 
radd_functionality, 
radd_comm, 
radd-ac, 
rleq_functionality, 
uiff_transitivity, 
rv-norm-nonneg, 
rnexp-rleq, 
rminus_wf, 
le_wf, 
false_wf, 
radd_wf, 
rnexp_wf, 
rsub_wf, 
radd-preserves-rleq, 
equal_wf, 
set_wf, 
rv-sub_wf, 
rleq_weakening_equal, 
rleq_functionality_wrt_implies, 
rmul_comm, 
rmul-zero-both, 
nat_plus_wf, 
less_than'_wf, 
rnexp2-nonneg, 
rmul_preserves_rleq2, 
ss-sep-symmetry, 
rv-sep-iff-norm, 
rless_wf, 
rleq-int, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermConstant_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
req-iff-rsub-is-0, 
itermVar_wf, 
itermAdd_wf, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
rsub_functionality, 
rnexp2, 
rnexp-positive, 
rleq_transitivity, 
req-implies-req, 
iff_wf, 
rv-add_wf, 
rv-mul_wf, 
rv-norm-eq-iff, 
req_functionality, 
req_transitivity, 
rv-ip-add-squared, 
rv-ip-mul2, 
rmul_functionality, 
rv-ip-mul, 
rmul-assoc, 
req_inversion, 
rv-norm-squared, 
quadratic2_wf, 
quadratic1_wf, 
quadratic-formula1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
natural_numberEquality, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
minusEquality, 
voidElimination, 
independent_pairEquality, 
isect_memberFormation, 
computeAll, 
intEquality, 
isect_memberEquality, 
voidEquality, 
int_eqEquality, 
addLevel, 
impliesFunctionality, 
promote_hyp, 
allFunctionality, 
inrFormation, 
inlFormation
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}r:\mBbbR{}.  \mforall{}p,q:Point.
    (p  \#  q
    {}\mRightarrow{}  (||p||  \mleq{}  r)
    {}\mRightarrow{}  let  v  =  q  -  p  in
                  (r0  \mleq{}  (((r(2)  *  p  \mcdot{}  v)  *  r(2)  *  p  \mcdot{}  v)  -  r(4)  *  ||v||\^{}2  *  (||p||\^{}2  -  r\^{}2)))
                  \mwedge{}  (||p  +  quadratic1(||v||\^{}2;r(2)  *  p  \mcdot{}  v;||p||\^{}2  -  r\^{}2)*v||  =  r)
                  \mwedge{}  (||p  +  quadratic2(||v||\^{}2;r(2)  *  p  \mcdot{}  v;||p||\^{}2  -  r\^{}2)*v||  =  r))
Date html generated:
2017_10_05-AM-00_05_27
Last ObjectModification:
2017_07_28-AM-08_54_56
Theory : inner!product!spaces
Home
Index