Nuprl Lemma : ip-line-circle-lemma

rv:InnerProductSpace. ∀r:ℝ. ∀p,q:Point.
  (p q
   (||p|| ≤ r)
   let in
         (r0 ≤ (((r(2) p ⋅ v) r(2) p ⋅ v) r(4) ||v||^2 (||p||^2 r^2)))
         ∧ (||p quadratic1(||v||^2;r(2) p ⋅ v;||p||^2 r^2)*v|| r)
         ∧ (||p quadratic2(||v||^2;r(2) p ⋅ v;||p||^2 r^2)*v|| r))


Proof




Definitions occuring in Statement :  rv-norm: ||x|| rv-sub: y rv-ip: x ⋅ y inner-product-space: InnerProductSpace rv-mul: a*x rv-add: y quadratic2: quadratic2(a;b;c) quadratic1: quadratic1(a;b;c) rleq: x ≤ y rnexp: x^k1 rsub: y req: y rmul: b int-to-real: r(n) real: ss-sep: y ss-point: Point let: let all: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] subtype_rel: A ⊆B and: P ∧ Q guard: {T} uimplies: supposing a rsub: y not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B nat: rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] rge: x ≥ y rnonneg: rnonneg(x) rleq: x ≤ y iff: ⇐⇒ Q let: let rev_implies:  Q real: itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top or: P ∨ Q rneq: x ≠ y
Lemmas referenced :  rleq_wf rv-norm_wf real_wf int-to-real_wf req_wf rmul_wf rv-ip_wf ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-point_wf radd-zero-both req_weakening radd-rminus-both radd_functionality radd_comm radd-ac rleq_functionality uiff_transitivity rv-norm-nonneg rnexp-rleq rminus_wf le_wf false_wf radd_wf rnexp_wf rsub_wf radd-preserves-rleq equal_wf set_wf rv-sub_wf rleq_weakening_equal rleq_functionality_wrt_implies rmul_comm rmul-zero-both nat_plus_wf less_than'_wf rnexp2-nonneg rmul_preserves_rleq2 ss-sep-symmetry rv-sep-iff-norm rless_wf rleq-int real_term_polynomial itermSubtract_wf itermMultiply_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma req-iff-rsub-is-0 itermVar_wf itermAdd_wf real_term_value_var_lemma real_term_value_add_lemma rsub_functionality rnexp2 rnexp-positive rleq_transitivity req-implies-req iff_wf rv-add_wf rv-mul_wf rv-norm-eq-iff req_functionality req_transitivity rv-ip-add-squared rv-ip-mul2 rmul_functionality rv-ip-mul rmul-assoc req_inversion rv-norm-squared quadratic2_wf quadratic1_wf quadratic-formula1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename setEquality productEquality natural_numberEquality sqequalRule instantiate independent_isectElimination because_Cache independent_functionElimination dependent_functionElimination independent_pairFormation dependent_set_memberEquality productElimination equalitySymmetry equalityTransitivity axiomEquality minusEquality voidElimination independent_pairEquality isect_memberFormation computeAll intEquality isect_memberEquality voidEquality int_eqEquality addLevel impliesFunctionality promote_hyp allFunctionality inrFormation inlFormation

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}r:\mBbbR{}.  \mforall{}p,q:Point.
    (p  \#  q
    {}\mRightarrow{}  (||p||  \mleq{}  r)
    {}\mRightarrow{}  let  v  =  q  -  p  in
                  (r0  \mleq{}  (((r(2)  *  p  \mcdot{}  v)  *  r(2)  *  p  \mcdot{}  v)  -  r(4)  *  ||v||\^{}2  *  (||p||\^{}2  -  r\^{}2)))
                  \mwedge{}  (||p  +  quadratic1(||v||\^{}2;r(2)  *  p  \mcdot{}  v;||p||\^{}2  -  r\^{}2)*v||  =  r)
                  \mwedge{}  (||p  +  quadratic2(||v||\^{}2;r(2)  *  p  \mcdot{}  v;||p||\^{}2  -  r\^{}2)*v||  =  r))



Date html generated: 2017_10_05-AM-00_05_27
Last ObjectModification: 2017_07_28-AM-08_54_56

Theory : inner!product!spaces


Home Index