Nuprl Lemma : sub-free-dim-1

[K:CRng]. ∀[S,T:Type].
  (∀s:T. ∀x:Point(sub-free-vs(K;S;T)).  (↓∃k:|K|. (x {<k, s>} ∈ Point(sub-free-vs(K;S;T))))) supposing 
     ((∀x,y:T.  (x y ∈ T)) and 
     strong-subtype(T;S))


Proof




Definitions occuring in Statement :  sub-free-vs: sub-free-vs(K;S;T) vs-point: Point(vs) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T pair: <a, b> universe: Type equal: t ∈ T crng: CRng rng_car: |r| single-bag: {x}
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] sub-free-vs: sub-free-vs(K;S;T) vs-point: Point(vs) sub-vs: (v:vs P[v]) mk-vs: mk-vs top: Top eq_atom: =a y ifthenelse: if then else fi  bfalse: ff btrue: tt fs-in-subtype: fs-in-subtype(K;S;T;f) fs-predicate: fs-predicate(K;S;p.P[p];f) squash: T exists: x:A. B[x] and: P ∧ Q crng: CRng rng: Rng prop: so_lambda: λ2x.t[x] pi1: fst(t) so_apply: x[s] basic-formal-sum: basic-formal-sum(K;S) cand: c∧ B free-vs: free-vs(K;S) formal-sum: formal-sum(K;S) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] respects-equality: respects-equality(S;T) implies:  Q strong-subtype: strong-subtype(A;B) bfs-predicate: bfs-predicate(K;S;p.P[p];b) pi2: snd(t) subtype_rel: A ⊆B guard: {T} nat: false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: sq_type: SQType(T) less_than: a < b decidable: Dec(P) bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) list_accum: list_accum rng_zero: 0 empty-bag: {} bfs-reduce: bfs-reduce(K;S;as;bs) infix_ap: y bag: bag(T) quotient: x,y:A//B[x; y] zero-bfs: ss bag-map: bag-map(f;bs) map: map(f;as) list_ind: list_ind single-bag: {x} formal-sum-add: y bag-append: as bs append: as bs iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b uiff: uiff(P;Q) monoid_p: IsMonoid(T;op;id) true: True formal-sum-mul: x record-select: r.x record-update: r[x := v]
Lemmas referenced :  rec_select_update_lemma istype-void vs-point_wf sub-free-vs_wf strong-subtype_wf istype-universe crng_wf bag-summation_wf rng_car_wf rng_plus_wf rng_zero_wf crng_all_properties rng_plus_comm2 single-bag_wf respects-equality-quotient1 basic-formal-sum_wf bfs-equiv_wf bfs-equiv-rel respects-equality-trivial bag_wf respects-equality-bag respects-equality-product subtype-respects-equality istype-base bag-member_wf pi2_wf bag_to_squash_list equal_wf nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat list-subtype-bag nil_wf empty-bag_wf quotient-member-eq subtype_rel_self implies-bfs-equiv bag-append_wf formal-sum-mul_wf1 bag-append-ident formal-sum-add_wf1 zero-bfs_wf cons_wf bag-member-append bag-member-single bag-summation-append pi1_wf_top squash_wf true_wf bag-summation-single iff_weakening_equal formal-sum_wf respects-equality-list-bag subtype_quotient formal-sum-add_wf rng_sig_wf rng_one_wf empty_bag_append_lemma bag_map_single_lemma rng_times_wf rng_times_one bag-map_wf respects-equality-set free-vs_wf fs-in-subtype_wf basic-formal-sum-subtype
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaFormation_alt sqequalHypSubstitution extract_by_obid dependent_functionElimination thin isect_memberEquality_alt voidElimination hypothesis sqequalRule setElimination rename imageElimination productElimination imageMemberEquality hypothesisEquality baseClosed universeIsType isectElimination independent_isectElimination lambdaEquality_alt functionIsTypeImplies inhabitedIsType functionIsType because_Cache equalityIstype isectIsTypeImplies instantiate universeEquality dependent_pairFormation_alt productEquality productIsType independent_pairFormation equalityTransitivity equalitySymmetry independent_pairEquality independent_functionElimination sqequalBase applyEquality promote_hyp hyp_replacement applyLambdaEquality functionEquality intWeakElimination natural_numberEquality approximateComputation int_eqEquality axiomEquality unionElimination hypothesis_subsumption dependent_set_memberEquality_alt baseApply closedConclusion intEquality voidEquality inlFormation_alt inrFormation_alt spreadEquality

Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].
    (\mforall{}s:T.  \mforall{}x:Point(sub-free-vs(K;S;T)).    (\mdownarrow{}\mexists{}k:|K|.  (x  =  \{<k,  s>\})))  supposing 
          ((\mforall{}x,y:T.    (x  =  y))  and 
          strong-subtype(T;S))



Date html generated: 2019_10_31-AM-06_30_21
Last ObjectModification: 2019_08_19-PM-02_54_38

Theory : linear!algebra


Home Index