Nuprl Lemma : sub-free-dim-1
∀[K:CRng]. ∀[S,T:Type].
  (∀s:T. ∀x:Point(sub-free-vs(K;S;T)).  (↓∃k:|K|. (x = {<k, s>} ∈ Point(sub-free-vs(K;S;T))))) supposing 
     ((∀x,y:T.  (x = y ∈ T)) and 
     strong-subtype(T;S))
Proof
Definitions occuring in Statement : 
sub-free-vs: sub-free-vs(K;S;T)
, 
vs-point: Point(vs)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
pair: <a, b>
, 
universe: Type
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
, 
single-bag: {x}
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
sub-free-vs: sub-free-vs(K;S;T)
, 
vs-point: Point(vs)
, 
sub-vs: (v:vs | P[v])
, 
mk-vs: mk-vs, 
top: Top
, 
eq_atom: x =a y
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
btrue: tt
, 
fs-in-subtype: fs-in-subtype(K;S;T;f)
, 
fs-predicate: fs-predicate(K;S;p.P[p];f)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
crng: CRng
, 
rng: Rng
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
cand: A c∧ B
, 
free-vs: free-vs(K;S)
, 
formal-sum: formal-sum(K;S)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
respects-equality: respects-equality(S;T)
, 
implies: P 
⇒ Q
, 
strong-subtype: strong-subtype(A;B)
, 
bfs-predicate: bfs-predicate(K;S;p.P[p];b)
, 
pi2: snd(t)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
decidable: Dec(P)
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
list_accum: list_accum, 
rng_zero: 0
, 
empty-bag: {}
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
infix_ap: x f y
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
zero-bfs: 0 * ss
, 
bag-map: bag-map(f;bs)
, 
map: map(f;as)
, 
list_ind: list_ind, 
single-bag: {x}
, 
formal-sum-add: x + y
, 
bag-append: as + bs
, 
append: as @ bs
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_or: a ↓∨ b
, 
uiff: uiff(P;Q)
, 
monoid_p: IsMonoid(T;op;id)
, 
true: True
, 
formal-sum-mul: k * x
, 
record-select: r.x
, 
record-update: r[x := v]
Lemmas referenced : 
rec_select_update_lemma, 
istype-void, 
vs-point_wf, 
sub-free-vs_wf, 
strong-subtype_wf, 
istype-universe, 
crng_wf, 
bag-summation_wf, 
rng_car_wf, 
rng_plus_wf, 
rng_zero_wf, 
crng_all_properties, 
rng_plus_comm2, 
single-bag_wf, 
respects-equality-quotient1, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
bfs-equiv-rel, 
respects-equality-trivial, 
bag_wf, 
respects-equality-bag, 
respects-equality-product, 
subtype-respects-equality, 
istype-base, 
bag-member_wf, 
pi2_wf, 
bag_to_squash_list, 
equal_wf, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
istype-nat, 
list-subtype-bag, 
nil_wf, 
empty-bag_wf, 
quotient-member-eq, 
subtype_rel_self, 
implies-bfs-equiv, 
bag-append_wf, 
formal-sum-mul_wf1, 
bag-append-ident, 
formal-sum-add_wf1, 
zero-bfs_wf, 
cons_wf, 
bag-member-append, 
bag-member-single, 
bag-summation-append, 
pi1_wf_top, 
squash_wf, 
true_wf, 
bag-summation-single, 
iff_weakening_equal, 
formal-sum_wf, 
respects-equality-list-bag, 
subtype_quotient, 
formal-sum-add_wf, 
rng_sig_wf, 
rng_one_wf, 
empty_bag_append_lemma, 
bag_map_single_lemma, 
rng_times_wf, 
rng_times_one, 
bag-map_wf, 
respects-equality-set, 
free-vs_wf, 
fs-in-subtype_wf, 
basic-formal-sum-subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
isect_memberEquality_alt, 
voidElimination, 
hypothesis, 
sqequalRule, 
setElimination, 
rename, 
imageElimination, 
productElimination, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
universeIsType, 
isectElimination, 
independent_isectElimination, 
lambdaEquality_alt, 
functionIsTypeImplies, 
inhabitedIsType, 
functionIsType, 
because_Cache, 
equalityIstype, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
dependent_pairFormation_alt, 
productEquality, 
productIsType, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_pairEquality, 
independent_functionElimination, 
sqequalBase, 
applyEquality, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
functionEquality, 
intWeakElimination, 
natural_numberEquality, 
approximateComputation, 
int_eqEquality, 
axiomEquality, 
unionElimination, 
hypothesis_subsumption, 
dependent_set_memberEquality_alt, 
baseApply, 
closedConclusion, 
intEquality, 
voidEquality, 
inlFormation_alt, 
inrFormation_alt, 
spreadEquality
Latex:
\mforall{}[K:CRng].  \mforall{}[S,T:Type].
    (\mforall{}s:T.  \mforall{}x:Point(sub-free-vs(K;S;T)).    (\mdownarrow{}\mexists{}k:|K|.  (x  =  \{<k,  s>\})))  supposing 
          ((\mforall{}x,y:T.    (x  =  y))  and 
          strong-subtype(T;S))
Date html generated:
2019_10_31-AM-06_30_21
Last ObjectModification:
2019_08_19-PM-02_54_38
Theory : linear!algebra
Home
Index