Nuprl Lemma : decimal-digits_wf
∀d:ℕ+. ∀x:ℝ.  ((d digits of x) ∈ {p:ℤ × ℤ| let n,m = p in |x - r(n) + (r(m)/r(10^d))| ≤ (r(2)/r(10^d))} )
Proof
Definitions occuring in Statement : 
decimal-digits: (d digits of x)
, 
rdiv: (x/y)
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rsub: x - y
, 
radd: a + b
, 
int-to-real: r(n)
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
spread: spread def, 
product: x:A × B[x]
, 
natural_number: $n
, 
int: ℤ
, 
fastexp: i^n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
decimal-digits: (d digits of x)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
has-value: (a)↓
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
false: False
, 
exp: i^n
, 
primrec: primrec(n;b;c)
, 
subtract: n - m
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
le: A ≤ B
, 
int_nzero: ℤ-o
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
rational-approx: (x within 1/n)
, 
real: ℝ
, 
rneq: x ≠ y
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rge: x ≥ y
Lemmas referenced : 
real_wf, 
nat_plus_wf, 
nat_plus_subtype_nat, 
exp_wf_nat_plus, 
less_than_wf, 
value-type-has-value, 
set-value-type, 
int-value-type, 
equal_wf, 
exp-fastexp, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
nat_plus_properties, 
equal-wf-base, 
primrec-wf-nat-plus, 
exp_wf2, 
true_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
false_wf, 
decidable__equal_int, 
intformeq_wf, 
itermMultiply_wf, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
mul-commutes, 
div-cancel, 
nequal_wf, 
squash_wf, 
exp_add, 
exp1, 
iff_weakening_equal, 
rational-approx-property, 
decidable__lt, 
multiply-is-int-iff, 
div_rem_sum, 
subtype_rel_sets, 
rleq_wf, 
rabs_wf, 
rsub_wf, 
int-rdiv_wf, 
int-to-real_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
equal-wf-base-T, 
radd_wf, 
req_functionality, 
req_weakening, 
rdiv_functionality, 
req_inversion, 
radd-int, 
radd-rdiv, 
rmul_wf, 
radd_functionality, 
rmul-int, 
rneq_wf, 
rmul_preserves_req, 
req_wf, 
uiff_transitivity, 
rmul-distrib, 
radd_comm, 
rmul-rdiv-cancel2, 
rleq_functionality, 
rabs_functionality, 
rsub_functionality, 
int-rdiv-req, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rleq-int-fractions
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
introduction, 
extract_by_obid, 
natural_numberEquality, 
hypothesisEquality, 
applyEquality, 
sqequalRule, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
callbyvalueReduce, 
independent_isectElimination, 
intEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
instantiate, 
cumulativity, 
rename, 
setElimination, 
baseApply, 
closedConclusion, 
because_Cache, 
multiplyEquality, 
divideEquality, 
addLevel, 
voidElimination, 
equalityUniverse, 
levelHypothesis, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
imageElimination, 
universeEquality, 
productElimination, 
applyLambdaEquality, 
pointwiseFunctionality, 
promote_hyp, 
setEquality, 
remainderEquality, 
inrFormation, 
addEquality, 
independent_pairEquality
Latex:
\mforall{}d:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.
    ((d  digits  of  x)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbZ{}|  let  n,m  =  p  in  |x  -  r(n)  +  (r(m)/r(10\^{}d))|  \mleq{}  (r(2)/r(10\^{}d))\}  )
Date html generated:
2017_10_03-AM-10_35_45
Last ObjectModification:
2017_07_28-AM-08_13_29
Theory : reals
Home
Index