Nuprl Lemma : decimal-digits_wf

d:ℕ+. ∀x:ℝ.  ((d digits of x) ∈ {p:ℤ × ℤlet n,m in |x r(n) (r(m)/r(10^d))| ≤ (r(2)/r(10^d))} )


Proof




Definitions occuring in Statement :  decimal-digits: (d digits of x) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y radd: b int-to-real: r(n) real: nat_plus: + all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  spread: spread def product: x:A × B[x] natural_number: $n int: fastexp: i^n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T decimal-digits: (d digits of x) subtype_rel: A ⊆B uall: [x:A]. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q prop: implies:  Q has-value: (a)↓ uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) guard: {T} nequal: a ≠ b ∈  not: ¬A false: False exp: i^n primrec: primrec(n;b;c) subtract: m nat: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top le: A ≤ B int_nzero: -o iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) rational-approx: (x within 1/n) real: rneq: x ≠ y rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y
Lemmas referenced :  real_wf nat_plus_wf nat_plus_subtype_nat exp_wf_nat_plus less_than_wf value-type-has-value set-value-type int-value-type equal_wf exp-fastexp subtype_base_sq set_subtype_base int_subtype_base nat_plus_properties equal-wf-base primrec-wf-nat-plus exp_wf2 true_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf false_wf decidable__equal_int intformeq_wf itermMultiply_wf int_formula_prop_eq_lemma int_term_value_mul_lemma mul-commutes div-cancel nequal_wf squash_wf exp_add exp1 iff_weakening_equal rational-approx-property decidable__lt multiply-is-int-iff div_rem_sum subtype_rel_sets rleq_wf rabs_wf rsub_wf int-rdiv_wf int-to-real_wf rdiv_wf rless-int rless_wf equal-wf-base-T radd_wf req_functionality req_weakening rdiv_functionality req_inversion radd-int radd-rdiv rmul_wf radd_functionality rmul-int rneq_wf rmul_preserves_req req_wf uiff_transitivity rmul-distrib radd_comm rmul-rdiv-cancel2 rleq_functionality rabs_functionality rsub_functionality int-rdiv-req rleq_functionality_wrt_implies rleq_weakening_equal rleq-int-fractions
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut sqequalHypSubstitution hypothesis introduction extract_by_obid natural_numberEquality hypothesisEquality applyEquality sqequalRule isectElimination thin dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed callbyvalueReduce independent_isectElimination intEquality lambdaEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination instantiate cumulativity rename setElimination baseApply closedConclusion because_Cache multiplyEquality divideEquality addLevel voidElimination equalityUniverse levelHypothesis unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll imageElimination universeEquality productElimination applyLambdaEquality pointwiseFunctionality promote_hyp setEquality remainderEquality inrFormation addEquality independent_pairEquality

Latex:
\mforall{}d:\mBbbN{}\msupplus{}.  \mforall{}x:\mBbbR{}.
    ((d  digits  of  x)  \mmember{}  \{p:\mBbbZ{}  \mtimes{}  \mBbbZ{}|  let  n,m  =  p  in  |x  -  r(n)  +  (r(m)/r(10\^{}d))|  \mleq{}  (r(2)/r(10\^{}d))\}  )



Date html generated: 2017_10_03-AM-10_35_45
Last ObjectModification: 2017_07_28-AM-08_13_29

Theory : reals


Home Index