Nuprl Lemma : derivative-continuous

I:Interval. ∀f,g:I ⟶ℝ.
  ((∀x,y:{x:ℝx ∈ I} .  (g[x] ≠ g[y]  x ≠ y))  λx.g[x] d(f[x])/dx on  g[x] continuous for x ∈ I)


Proof




Definitions occuring in Statement :  derivative: λz.g[z] d(f[x])/dx on I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rneq: x ≠ y real: so_apply: x[s] all: x:A. B[x] implies:  Q set: {x:A| B[x]} 
Definitions unfolded in proof :  rfun: I ⟶ℝ label: ...$L... t so_apply: x[s] so_lambda: λ2x.t[x] uall: [x:A]. B[x] prop: member: t ∈ T continuous: f[x] continuous for x ∈ I implies:  Q all: x:A. B[x] top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) decidable: Dec(P) rless: x < y rev_implies:  Q iff: ⇐⇒ Q or: P ∨ Q guard: {T} rneq: x ≠ y uimplies: supposing a cand: c∧ B sq_exists: x:{A| B[x]} and: P ∧ Q true: True less_than': less_than'(a;b) squash: T less_than: a < b nat_plus: + derivative: λz.g[z] d(f[x])/dx on I subinterval: I ⊆  uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y rgt: x > y
Lemmas referenced :  rmul_comm rless_functionality rmul_preserves_rless rless_transitivity1 rneq-int equal_wf rless_irreflexivity rleq_weakening_rless rless_functionality_wrt_implies rless-int-fractions2 rneq-iff-rabs rleq-iff-not-rless rminus-as-rmul radd-rminus-assoc radd_comm radd-ac radd-assoc rminus-rminus rminus-radd rminus_functionality rmul_over_rminus radd_functionality rmul-distrib req_transitivity rabs_functionality uiff_transitivity rabs-rmul rminus_wf r-triangle-inequality radd-int-fractions req_functionality multiply_nat_plus intformeq_wf int_formula_prop_eq_lemma req-int-fractions decidable__equal_int itermAdd_wf int_term_value_add_lemma rmul-distrib2 req_inversion rleq_weakening_equal radd_functionality_wrt_rleq rleq_functionality_wrt_implies radd_wf rmul_functionality rmul_wf itermMultiply_wf int_term_value_mul_lemma req_weakening rabs-difference-symmetry rleq_functionality i-approx-is-subinterval mul_nat_plus less_than_wf rleq_wf rabs_wf rsub_wf rless_wf int-to-real_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf nat_plus_wf set_wf icompact_wf i-approx_wf derivative_wf real_wf i-member_wf all_wf rneq_wf rfun_wf interval_wf
Rules used in proof :  dependent_set_memberEquality functionEquality rename setElimination because_Cache setEquality applyEquality hypothesisEquality lambdaEquality sqequalRule thin isectElimination sqequalHypSubstitution hypothesis lemma_by_obid cut lambdaFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation unionElimination independent_functionElimination inrFormation independent_isectElimination productEquality productElimination baseClosed imageMemberEquality introduction independent_pairFormation natural_numberEquality dependent_functionElimination multiplyEquality equalityTransitivity equalitySymmetry equalityEquality addEquality minusEquality inlFormation

Latex:
\mforall{}I:Interval.  \mforall{}f,g:I  {}\mrightarrow{}\mBbbR{}.
    ((\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    (g[x]  \mneq{}  g[y]  {}\mRightarrow{}  x  \mneq{}  y))
    {}\mRightarrow{}  \mlambda{}x.g[x]  =  d(f[x])/dx  on  I
    {}\mRightarrow{}  g[x]  continuous  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-10_00_54
Last ObjectModification: 2016_01_17-AM-00_44_47

Theory : reals


Home Index