Nuprl Lemma : non-homogeneous-add

[R:ℕ ⟶ ℕ ⟶ ℙ]
  ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀p,q:ℕ.
    (p < q
     homogeneous(R;n 1;s.p@n)
     homogeneous(R;n 1;s.q@n)
     homogeneous(R;n 2;s.p@n.q@n 1))
     {0 < n ∧ (R (s (n 1)) ⇐⇒ (s (n 1)) q))})


Proof




Definitions occuring in Statement :  homogeneous: homogeneous(R;n;s) seq-add: s.x@n int_seg: {i..j-} nat: less_than: a < b uall: [x:A]. B[x] prop: guard: {T} all: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q and: P ∧ Q apply: a function: x:A ⟶ B[x] subtract: m add: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T nat: decidable: Dec(P) or: P ∨ Q not: ¬A iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True top: Top strictly-increasing-seq: strictly-increasing-seq(n;s) seq-add: s.x@n int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt guard: {T} lelt: i ≤ j < k bfalse: ff exists: x:A. B[x] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) bnot: ¬bb ifthenelse: if then else fi  assert: b homogeneous: homogeneous(R;n;s) prop: cand: c∧ B ge: i ≥ 
Lemmas referenced :  decidable__lt le2-homogeneous decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le seq-add_wf not-lt-2 istype-void le-add-cancel2 eq_int_wf eqtt_to_assert assert_of_eq_int le_antisymmetry_iff less-iff-le eqff_to_assert set_subtype_base le_wf istype-int int_subtype_base and_wf less_than_wf bool_subtype_base bool_cases_sqequal subtype_base_sq bool_wf iff_transitivity assert_wf bnot_wf not_wf equal-wf-base iff_weakening_uiff assert_of_bnot istype-assert equal_wf not-equal-2 int_seg_wf strictly-increasing-seq-add istype-less_than subtract_wf minus-minus add-mul-special zero-mul le-add-cancel-alt homogeneous_wf nat_wf istype-nat decidable__and2 less_than_transitivity2 le_weakening2 less_than_transitivity1 le_weakening less_than_irreflexivity iff_wf squash_wf true_wf decidable__int_equal istype-sqequal sq_stable__and sq_stable__less_than member-less_than two-mul mul-distributes-right one-mul nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin natural_numberEquality setElimination rename because_Cache hypothesis unionElimination independent_functionElimination isectElimination hypothesisEquality Error :dependent_set_memberEquality_alt,  addEquality independent_pairFormation voidElimination productElimination independent_isectElimination sqequalRule imageMemberEquality baseClosed imageElimination applyEquality minusEquality Error :lambdaEquality_alt,  Error :isect_memberEquality_alt,  Error :inhabitedIsType,  equalityElimination int_eqReduceTrueSq Error :dependent_pairFormation_alt,  equalityTransitivity equalitySymmetry Error :equalityIsType4,  baseApply closedConclusion intEquality promote_hyp instantiate cumulativity Error :equalityIstype,  sqequalBase Error :functionIsType,  int_eqReduceFalseSq Error :equalityIsType1,  Error :universeIsType,  functionExtensionality Error :productIsType,  universeEquality hyp_replacement multiplyEquality Error :functionIsTypeImplies

Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}p,q:\mBbbN{}.
        (p  <  q
        {}\mRightarrow{}  homogeneous(R;n  +  1;s.p@n)
        {}\mRightarrow{}  homogeneous(R;n  +  1;s.q@n)
        {}\mRightarrow{}  (\mneg{}homogeneous(R;n  +  2;s.p@n.q@n  +  1))
        {}\mRightarrow{}  \{0  <  n  \mwedge{}  (\mneg{}(R  (s  (n  -  1))  p  \mLeftarrow{}{}\mRightarrow{}  R  (s  (n  -  1))  q))\})



Date html generated: 2019_06_20-AM-11_29_09
Last ObjectModification: 2018_11_22-PM-10_39_06

Theory : bar-induction


Home Index