Nuprl Lemma : non-homogeneous-add
∀[R:ℕ ⟶ ℕ ⟶ ℙ]
  ∀n:ℕ. ∀s:ℕn ⟶ ℕ. ∀p,q:ℕ.
    (p < q
    ⇒ homogeneous(R;n + 1;s.p@n)
    ⇒ homogeneous(R;n + 1;s.q@n)
    ⇒ (¬homogeneous(R;n + 2;s.p@n.q@n + 1))
    ⇒ {0 < n ∧ (¬(R (s (n - 1)) p ⇐⇒ R (s (n - 1)) q))})
Proof
Definitions occuring in Statement : 
homogeneous: homogeneous(R;n;s), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
nat: ℕ, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
squash: ↓T, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
le: A ≤ B, 
less_than': less_than'(a;b), 
true: True, 
top: Top, 
strictly-increasing-seq: strictly-increasing-seq(n;s), 
seq-add: s.x@n, 
int_seg: {i..j-}, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
guard: {T}, 
lelt: i ≤ j < k, 
bfalse: ff, 
exists: ∃x:A. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
sq_type: SQType(T), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
homogeneous: homogeneous(R;n;s), 
prop: ℙ, 
cand: A c∧ B, 
ge: i ≥ j 
Lemmas referenced : 
decidable__lt, 
le2-homogeneous, 
decidable__le, 
istype-false, 
not-le-2, 
sq_stable__le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
istype-le, 
seq-add_wf, 
not-lt-2, 
istype-void, 
le-add-cancel2, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
le_antisymmetry_iff, 
less-iff-le, 
eqff_to_assert, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
and_wf, 
less_than_wf, 
bool_subtype_base, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
iff_transitivity, 
assert_wf, 
bnot_wf, 
not_wf, 
equal-wf-base, 
iff_weakening_uiff, 
assert_of_bnot, 
istype-assert, 
equal_wf, 
not-equal-2, 
int_seg_wf, 
strictly-increasing-seq-add, 
istype-less_than, 
subtract_wf, 
minus-minus, 
add-mul-special, 
zero-mul, 
le-add-cancel-alt, 
homogeneous_wf, 
nat_wf, 
istype-nat, 
decidable__and2, 
less_than_transitivity2, 
le_weakening2, 
less_than_transitivity1, 
le_weakening, 
less_than_irreflexivity, 
iff_wf, 
squash_wf, 
true_wf, 
decidable__int_equal, 
istype-sqequal, 
sq_stable__and, 
sq_stable__less_than, 
member-less_than, 
two-mul, 
mul-distributes-right, 
one-mul, 
nat_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
unionElimination, 
independent_functionElimination, 
isectElimination, 
hypothesisEquality, 
Error :dependent_set_memberEquality_alt, 
addEquality, 
independent_pairFormation, 
voidElimination, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
applyEquality, 
minusEquality, 
Error :lambdaEquality_alt, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
equalityElimination, 
int_eqReduceTrueSq, 
Error :dependent_pairFormation_alt, 
equalityTransitivity, 
equalitySymmetry, 
Error :equalityIsType4, 
baseApply, 
closedConclusion, 
intEquality, 
promote_hyp, 
instantiate, 
cumulativity, 
Error :equalityIstype, 
sqequalBase, 
Error :functionIsType, 
int_eqReduceFalseSq, 
Error :equalityIsType1, 
Error :universeIsType, 
functionExtensionality, 
Error :productIsType, 
universeEquality, 
hyp_replacement, 
multiplyEquality, 
Error :functionIsTypeImplies
Latex:
\mforall{}[R:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}  {}\mrightarrow{}  \mBbbP{}]
    \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}.  \mforall{}p,q:\mBbbN{}.
        (p  <  q
        {}\mRightarrow{}  homogeneous(R;n  +  1;s.p@n)
        {}\mRightarrow{}  homogeneous(R;n  +  1;s.q@n)
        {}\mRightarrow{}  (\mneg{}homogeneous(R;n  +  2;s.p@n.q@n  +  1))
        {}\mRightarrow{}  \{0  <  n  \mwedge{}  (\mneg{}(R  (s  (n  -  1))  p  \mLeftarrow{}{}\mRightarrow{}  R  (s  (n  -  1))  q))\})
Date html generated:
2019_06_20-AM-11_29_09
Last ObjectModification:
2018_11_22-PM-10_39_06
Theory : bar-induction
Home
Index