Nuprl Lemma : W-wfdd

[A:𝕌']. ∀[B:A ⟶ Type]. ∀[w:W(A;a.B[a])].  coW-wfdd(a.B[a];w)


Proof




Definitions occuring in Statement :  coW-wfdd: coW-wfdd(a.B[a];w) W: W(A;a.B[a]) uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) implies:  Q W: W(A;a.B[a]) param-W: pW coW: coW(A;a.B[a]) coW-wfdd: coW-wfdd(a.B[a];w) all: x:A. B[x] squash: T nat: uimplies: supposing a decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m top: Top le: A ≤ B less_than': less_than'(a;b) true: True prop: pcw-path: Path pcw-step: pcw-step(P;p.A[p];p,a.B[p; a];p,a,b.C[p; a; b]) assert: b bnot: ¬bb guard: {T} sq_type: SQType(T) exists: x:A. B[x] bfalse: ff ifthenelse: if then else fi  band: p ∧b q btrue: tt it: unit: Unit bool: 𝔹 exposed-bfalse: exposed-bfalse pi2: snd(t) coW-dom: coW-dom(a.B[a];w) pi1: fst(t) ext-eq: A ≡ B pcw-steprel: StepRel(s1;s2) spreadn: spread3 pcw-step-agree: StepAgree(s;p1;w) cand: c∧ B respects-equality: respects-equality(S;T) coW-item: coW-item(w;b) so_apply: x[s1;s2;s3] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] copath-length: copath-length(p) copath: copath(a.B[a];w) eq_int: (i =z j) coPath-at: coPath-at(n;w;p) copath-at: copath-at(w;p) pcw-pp-barred: Barred(pp) pcw-partial: pcw-partial(path;n) isr: isr(x)
Lemmas referenced :  sq_stable__coW-wfdd W-subtype-coW istype-nat copath_wf istype-int copath-length_wf set_subtype_base le_wf int_subtype_base decidable__le istype-false not-le-2 sq_stable__le condition-implies-le minus-add istype-void minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel istype-le copathAgree_wf W_wf istype-universe decidable__int_equal nat_wf it_wf copath-at_wf neg_assert_of_eq_int assert-bnot bool_subtype_base bool_wf subtype_base_sq bool_cases_sqequal eqff_to_assert assert_of_eq_int eqtt_to_assert eq_int_wf le_antisymmetry_iff not-lt-2 decidable__lt copath-last_wf coW_wf true_wf squash_wf coW-dom_wf le-add-cancel2 not-equal-2 copathAgree-last unit_wf2 subtype_rel_weakening coW-ext subtype_rel_universe1 equal_wf subtype_rel_self iff_weakening_equal coW-subtype1 subtype-respects-equality coW-item_wf subtype_rel-equal pcw-steprel_wf minus-minus less-iff-le subtract_wf subtract-add-cancel assert_of_band iff_weakening_uiff iff_transitivity member_wf iff_functionality_wrt_iff btrue_wf assert_wf band_wf iff_imp_equal_bool not_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality applyEquality because_Cache sqequalRule Error :lambdaEquality_alt,  independent_functionElimination setElimination rename Error :lambdaFormation_alt,  imageElimination imageMemberEquality baseClosed Error :setIsType,  Error :functionIsType,  Error :universeIsType,  Error :equalityIstype,  intEquality closedConclusion natural_numberEquality independent_isectElimination sqequalBase equalitySymmetry Error :dependent_set_memberEquality_alt,  addEquality dependent_functionElimination unionElimination independent_pairFormation voidElimination productElimination Error :isect_memberEquality_alt,  minusEquality baseApply equalityTransitivity instantiate cumulativity universeEquality Error :dependent_pairEquality_alt,  functionExtensionality promote_hyp Error :equalityIsType1,  Error :dependent_pairFormation_alt,  equalityElimination Error :inhabitedIsType,  Error :inlEquality_alt,  hyp_replacement applyLambdaEquality Error :inrEquality_alt,  functionEquality productEquality hypothesis_subsumption Error :unionIsType,  Error :productIsType,  Error :equalityIsType4

Latex:
\mforall{}[A:\mBbbU{}'].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[w:W(A;a.B[a])].    coW-wfdd(a.B[a];w)



Date html generated: 2019_06_20-PM-00_57_29
Last ObjectModification: 2019_01_02-PM-01_34_18

Theory : co-recursion-2


Home Index