Nuprl Lemma : disjoint_increasing_onto
∀[m,n,k:ℕ]. ∀[f:ℕn ⟶ ℕm]. ∀[g:ℕk ⟶ ℕm].
  (m = (n + k) ∈ ℕ) supposing 
     ((∀j1:ℕn. ∀j2:ℕk.  (¬((f j1) = (g j2) ∈ ℤ))) and 
     (∀i:ℕm. ((∃j:ℕn. (i = (f j) ∈ ℤ)) ∨ (∃j:ℕk. (i = (g j) ∈ ℤ)))) and 
     increasing(g;k) and 
     increasing(f;n))
Proof
Definitions occuring in Statement : 
increasing: increasing(f;k)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
or: P ∨ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
pi1: fst(t)
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
top: Top
, 
ge: i ≥ j 
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
false: False
, 
decidable: Dec(P)
, 
inject: Inj(A;B;f)
, 
sq_type: SQType(T)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
Lemmas referenced : 
all_wf, 
int_seg_wf, 
not_wf, 
equal_wf, 
or_wf, 
exists_wf, 
increasing_wf, 
nat_wf, 
injection_le, 
add_nat_wf, 
sq_stable__le, 
le_wf, 
lelt_wf, 
set_subtype_base, 
int_subtype_base, 
add-member-int_seg1, 
add-associates, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
subtract_wf, 
inject_wf, 
add-commutes, 
add_functionality_wrt_le, 
le_reflexive, 
zero-add, 
one-mul, 
two-mul, 
mul-distributes-right, 
less-iff-le, 
not-lt-2, 
omega-shadow, 
less_than_wf, 
mul-distributes, 
minus-add, 
mul-associates, 
mul-swap, 
not-le-2, 
mul-commutes, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
decidable__le, 
subtype_base_sq, 
le_weakening2, 
add-is-int-iff, 
le-add-cancel, 
le_transitivity, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
minus-zero, 
increasing_inj, 
equal-wf-T-base, 
assert_wf, 
le_int_wf, 
bnot_wf, 
uiff_transitivity, 
assert_functionality_wrt_uiff, 
bnot_of_lt_int, 
assert_of_le_int, 
le_antisymmetry
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
dependent_set_memberEquality, 
addEquality, 
lambdaFormation, 
independent_functionElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_functionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
unionEquality, 
productEquality, 
unionElimination, 
productElimination, 
independent_pairFormation, 
sqequalIntensionalEquality, 
promote_hyp, 
voidElimination, 
voidEquality, 
minusEquality, 
multiplyEquality, 
addLevel, 
levelHypothesis, 
applyLambdaEquality, 
instantiate, 
cumulativity, 
baseApply, 
closedConclusion, 
equalityElimination
Latex:
\mforall{}[m,n,k:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}m].  \mforall{}[g:\mBbbN{}k  {}\mrightarrow{}  \mBbbN{}m].
    (m  =  (n  +  k))  supposing 
          ((\mforall{}j1:\mBbbN{}n.  \mforall{}j2:\mBbbN{}k.    (\mneg{}((f  j1)  =  (g  j2))))  and 
          (\mforall{}i:\mBbbN{}m.  ((\mexists{}j:\mBbbN{}n.  (i  =  (f  j)))  \mvee{}  (\mexists{}j:\mBbbN{}k.  (i  =  (g  j)))))  and 
          increasing(g;k)  and 
          increasing(f;n))
Date html generated:
2017_04_14-AM-07_34_06
Last ObjectModification:
2017_02_27-PM-03_12_59
Theory : fun_1
Home
Index