Nuprl Lemma : rng_lsum-partial-permutations
∀[r:CRng]. ∀[n:{2...}]. ∀[i:ℕn]. ∀[F:(ℕn ⟶ ℕn) ⟶ |r|].
  (Σ{r} p ∈ partial-permutations-list(n;i). F[p]
  = Σ{r} f ∈ permutations-list(n - 1). F[(i, n - 1) o extend-injection(n - 1;f)]
  ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x], 
partial-permutations-list: partial-permutations-list(n;i), 
permutations-list: permutations-list(n), 
extend-injection: extend-injection(a;f), 
flip: (i, j), 
compose: f o g, 
int_upper: {i...}, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
function: x:A ⟶ B[x], 
subtract: n - m, 
natural_number: $n, 
equal: s = t ∈ T, 
crng: CRng, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
injection: A →⟶ B, 
int_seg: {i..j-}, 
int_upper: {i...}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
nat: ℕ, 
subtype_rel: A ⊆r B, 
crng: CRng, 
so_lambda: λ2x.t[x], 
rng: Rng, 
so_apply: x[s], 
istype: istype(T), 
nat_plus: ℕ+, 
le: A ≤ B, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
partial-permutations-list: partial-permutations-list(n;i), 
less_than': less_than'(a;b), 
uiff: uiff(P;Q), 
sq_type: SQType(T), 
inject: Inj(A;B;f), 
cand: A c∧ B, 
compose: f o g, 
extend-injection: extend-injection(a;f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
bnot: ¬bb, 
assert: ↑b, 
flip: (i, j), 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
less_than: a < b
Lemmas referenced : 
compose-injections, 
flip-injection, 
subtract_wf, 
int_seg_properties, 
int_upper_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
decidable__lt, 
istype-le, 
istype-less_than, 
flip_wf, 
inject_wf, 
int_seg_wf, 
extend-injection_wf, 
subtype_rel_self, 
injection_wf, 
rng_lsum_map, 
subtype_rel_dep_function, 
rng_car_wf, 
permutations-list_wf, 
rng_lsum_functionality_wrt_permutation, 
map_wf, 
partial-permutations-list_wf, 
less_than_transitivity2, 
istype-int_upper, 
crng_wf, 
permutation-when-no_repeats, 
l_member_wf, 
no_repeats-partial-permutations-list, 
member_filter, 
eq_int_wf, 
upper_subtype_nat, 
istype-false, 
assert_of_eq_int, 
member_map, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
lelt_wf, 
member-permutations-list, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
neg_assert_of_eq_int, 
flip_twice, 
member-map, 
equal-wf-base, 
member-partial-permutations-list, 
set_wf, 
equal_wf, 
all_wf, 
no_repeats_wf, 
list_wf, 
no_repeats-permutations-list, 
le_wf, 
no_repeats_map, 
false_wf, 
int_seg_subtype
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
hypothesis, 
natural_numberEquality, 
independent_pairFormation, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
universeIsType, 
productIsType, 
applyEquality, 
functionEquality, 
functionIsType, 
inhabitedIsType, 
closedConclusion, 
equalityTransitivity, 
equalitySymmetry, 
axiomEquality, 
isectIsTypeImplies, 
promote_hyp, 
instantiate, 
cumulativity, 
intEquality, 
functionExtensionality, 
applyLambdaEquality, 
equalityIstype, 
sqequalBase, 
equalityElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
hyp_replacement, 
productEquality, 
setEquality, 
lambdaFormation, 
voidEquality, 
isect_memberEquality, 
lambdaEquality, 
dependent_pairFormation, 
dependent_set_memberEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[n:\{2...\}].  \mforall{}[i:\mBbbN{}n].  \mforall{}[F:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)  {}\mrightarrow{}  |r|].
    (\mSigma{}\{r\}  p  \mmember{}  partial-permutations-list(n;i).  F[p]
    =  \mSigma{}\{r\}  f  \mmember{}  permutations-list(n  -  1).  F[(i,  n  -  1)  o  extend-injection(n  -  1;f)])
Date html generated:
2019_10_16-AM-11_29_55
Last ObjectModification:
2018_11_30-PM-01_22_54
Theory : matrices
Home
Index