Nuprl Lemma : Pascal-completion-property
∀[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[x,y:Atom].
  ((Pascal-completion(r;f;g;x;y)(x:=0) = f ∈ PowerSeries(r))
  ∧ (Pascal-completion(r;f;g;x;y)(y:=0) = g ∈ PowerSeries(r))
  ∧ fps-Pascal(r;x;y;Pascal-completion(r;f;g;x;y)))
  ∧ (∀h:PowerSeries(r)
       (fps-Pascal(r;x;y;h)
       ⇒ (h(x:=0) = f ∈ PowerSeries(r))
       ⇒ (h(y:=0) = g ∈ PowerSeries(r))
       ⇒ (h = Pascal-completion(r;f;g;x;y) ∈ PowerSeries(r)))) 
  supposing (¬(1 = 0 ∈ |r|))
  ∧ (¬(x = y ∈ Atom))
  ∧ (f(x:=0) = f ∈ PowerSeries(r))
  ∧ (g(y:=0) = g ∈ PowerSeries(r))
  ∧ (f(y:=0) = g(x:=0) ∈ PowerSeries(r))
Proof
Definitions occuring in Statement : 
Pascal-completion: Pascal-completion(r;f;g;x;y), 
fps-Pascal: fps-Pascal(r;x;y;f), 
fps-elim-x: f(x:=0), 
power-series: PowerSeries(X;r), 
atom-deq: AtomDeq, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
and: P ∧ Q, 
atom: Atom, 
equal: s = t ∈ T, 
crng: CRng, 
rng_one: 1, 
rng_zero: 0, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
and: P ∧ Q, 
cand: A c∧ B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
fps-Pascal: fps-Pascal(r;x;y;f), 
crng: CRng, 
rng: Rng, 
Pascal-completion: Pascal-completion(r;f;g;x;y), 
true: True, 
atom-deq: AtomDeq, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
not: ¬A, 
false: False, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
fps-sub: (f-g), 
nequal: a ≠ b ∈ T , 
squash: ↓T, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
infix_ap: x f y, 
empty-bag: {}, 
fps-atom: atom(x), 
fps-neg: -(f), 
fps-one: 1, 
fps-add: (f+g), 
fps-coeff: f[b], 
single-bag: {x}, 
fps-single: <c>, 
bag-null: bag-null(bs), 
null: null(as), 
nil: [], 
bag-eq: bag-eq(eq;as;bs), 
bag-count: (#x in bs), 
bag-all: bag-all(x.p[x];bs), 
count: count(P;L), 
bag-map: bag-map(f;bs), 
bag-reduce: bag-reduce(x,y.f[x; y];zero;bs), 
top: Top, 
lt_int: i <z j, 
band: p ∧b q
Lemmas referenced : 
equal_wf, 
power-series_wf, 
fps-elim-x_wf, 
atom-deq_wf, 
fps-Pascal_wf, 
bag_wf, 
not_wf, 
rng_car_wf, 
rng_one_wf, 
rng_zero_wf, 
equal-wf-base, 
crng_wf, 
atom-valueall-type, 
fps-sub_wf, 
fps-add_wf, 
fps-mul_wf, 
fps-one_wf, 
fps-atom_wf, 
fps-pascal_wf, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
neg_id_fps, 
fps-neg_wf, 
fps-pascal-elim, 
iff_weakening_equal, 
mon_ident_fps, 
fps-div_wf, 
squash_wf, 
true_wf, 
fps-elim-x-mul, 
valueall-type_wf, 
deq_wf, 
fps-elim-x-sub, 
fps-elim-x-add, 
fps-elim-x-one, 
fps-elim-x-atom, 
fps-elim-x-elim-x, 
mul_over_plus_fps, 
mul_over_minus_fps, 
mul_assoc_fps, 
mul_one_fps, 
mul_ac_1_fps, 
mul_comm_fps, 
mon_assoc_fps, 
abmonoid_ac_1_fps, 
abmonoid_comm_fps, 
iabgrp_op_inv_assoc_fps, 
fps-div-property, 
rng_times_wf, 
fps-coeff_wf, 
empty-bag_wf, 
rng_minus_wf, 
rng_plus_wf, 
infix_ap_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
rng_times_over_plus, 
rng_times_over_minus, 
rng_times_zero, 
rng_times_one, 
rng_minus_zero, 
rng_plus_zero, 
fps-pascal-symmetry, 
fps-Pascal-iff, 
Pascal-completion_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
hypothesis, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
atomEquality, 
hypothesisEquality, 
sqequalRule, 
independent_pairEquality, 
axiomEquality, 
lambdaEquality, 
dependent_functionElimination, 
productEquality, 
setElimination, 
rename, 
because_Cache, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
independent_functionElimination, 
voidElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
applyEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
applyLambdaEquality, 
universeEquality, 
equalityUniverse, 
levelHypothesis, 
voidEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(r)].  \mforall{}[x,y:Atom].
    ((Pascal-completion(r;f;g;x;y)(x:=0)  =  f)
    \mwedge{}  (Pascal-completion(r;f;g;x;y)(y:=0)  =  g)
    \mwedge{}  fps-Pascal(r;x;y;Pascal-completion(r;f;g;x;y)))
    \mwedge{}  (\mforall{}h:PowerSeries(r)
              (fps-Pascal(r;x;y;h)
              {}\mRightarrow{}  (h(x:=0)  =  f)
              {}\mRightarrow{}  (h(y:=0)  =  g)
              {}\mRightarrow{}  (h  =  Pascal-completion(r;f;g;x;y)))) 
    supposing  (\mneg{}(1  =  0))  \mwedge{}  (\mneg{}(x  =  y))  \mwedge{}  (f(x:=0)  =  f)  \mwedge{}  (g(y:=0)  =  g)  \mwedge{}  (f(y:=0)  =  g(x:=0))
Date html generated:
2018_05_21-PM-10_12_32
Last ObjectModification:
2017_07_26-PM-06_34_58
Theory : power!series
Home
Index