Nuprl Lemma : Pascal-completion-property

[r:CRng]. ∀[f,g:PowerSeries(r)]. ∀[x,y:Atom].
  ((Pascal-completion(r;f;g;x;y)(x:=0) f ∈ PowerSeries(r))
  ∧ (Pascal-completion(r;f;g;x;y)(y:=0) g ∈ PowerSeries(r))
  ∧ fps-Pascal(r;x;y;Pascal-completion(r;f;g;x;y)))
  ∧ (∀h:PowerSeries(r)
       (fps-Pascal(r;x;y;h)
        (h(x:=0) f ∈ PowerSeries(r))
        (h(y:=0) g ∈ PowerSeries(r))
        (h Pascal-completion(r;f;g;x;y) ∈ PowerSeries(r)))) 
  supposing (1 0 ∈ |r|))
  ∧ (x y ∈ Atom))
  ∧ (f(x:=0) f ∈ PowerSeries(r))
  ∧ (g(y:=0) g ∈ PowerSeries(r))
  ∧ (f(y:=0) g(x:=0) ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  Pascal-completion: Pascal-completion(r;f;g;x;y) fps-Pascal: fps-Pascal(r;x;y;f) fps-elim-x: f(x:=0) power-series: PowerSeries(X;r) atom-deq: AtomDeq uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q atom: Atom equal: t ∈ T crng: CRng rng_one: 1 rng_zero: 0 rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q prop: fps-Pascal: fps-Pascal(r;x;y;f) crng: CRng rng: Rng Pascal-completion: Pascal-completion(r;f;g;x;y) true: True atom-deq: AtomDeq bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  not: ¬A false: False bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b fps-sub: (f-g) nequal: a ≠ b ∈  squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q infix_ap: y empty-bag: {} fps-atom: atom(x) fps-neg: -(f) fps-one: 1 fps-add: (f+g) fps-coeff: f[b] single-bag: {x} fps-single: <c> bag-null: bag-null(bs) null: null(as) nil: [] bag-eq: bag-eq(eq;as;bs) bag-count: (#x in bs) bag-all: bag-all(x.p[x];bs) count: count(P;L) bag-map: bag-map(f;bs) bag-reduce: bag-reduce(x,y.f[x; y];zero;bs) top: Top lt_int: i <j band: p ∧b q
Lemmas referenced :  equal_wf power-series_wf fps-elim-x_wf atom-deq_wf fps-Pascal_wf bag_wf not_wf rng_car_wf rng_one_wf rng_zero_wf equal-wf-base crng_wf atom-valueall-type fps-sub_wf fps-add_wf fps-mul_wf fps-one_wf fps-atom_wf fps-pascal_wf eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_atom neg_id_fps fps-neg_wf fps-pascal-elim iff_weakening_equal mon_ident_fps fps-div_wf squash_wf true_wf fps-elim-x-mul valueall-type_wf deq_wf fps-elim-x-sub fps-elim-x-add fps-elim-x-one fps-elim-x-atom fps-elim-x-elim-x mul_over_plus_fps mul_over_minus_fps mul_assoc_fps mul_one_fps mul_ac_1_fps mul_comm_fps mon_assoc_fps abmonoid_ac_1_fps abmonoid_comm_fps iabgrp_op_inv_assoc_fps fps-div-property rng_times_wf fps-coeff_wf empty-bag_wf rng_minus_wf rng_plus_wf infix_ap_wf reduce_nil_lemma reduce_cons_lemma map_nil_lemma map_cons_lemma rng_times_over_plus rng_times_over_minus rng_times_zero rng_times_one rng_minus_zero rng_plus_zero fps-pascal-symmetry fps-Pascal-iff Pascal-completion_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin independent_pairFormation hypothesis lambdaFormation extract_by_obid isectElimination atomEquality hypothesisEquality sqequalRule independent_pairEquality axiomEquality lambdaEquality dependent_functionElimination productEquality setElimination rename because_Cache isect_memberEquality equalityTransitivity equalitySymmetry independent_isectElimination natural_numberEquality unionElimination equalityElimination independent_functionElimination voidElimination dependent_pairFormation promote_hyp instantiate cumulativity applyEquality imageElimination imageMemberEquality baseClosed hyp_replacement applyLambdaEquality universeEquality equalityUniverse levelHypothesis voidEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[f,g:PowerSeries(r)].  \mforall{}[x,y:Atom].
    ((Pascal-completion(r;f;g;x;y)(x:=0)  =  f)
    \mwedge{}  (Pascal-completion(r;f;g;x;y)(y:=0)  =  g)
    \mwedge{}  fps-Pascal(r;x;y;Pascal-completion(r;f;g;x;y)))
    \mwedge{}  (\mforall{}h:PowerSeries(r)
              (fps-Pascal(r;x;y;h)
              {}\mRightarrow{}  (h(x:=0)  =  f)
              {}\mRightarrow{}  (h(y:=0)  =  g)
              {}\mRightarrow{}  (h  =  Pascal-completion(r;f;g;x;y)))) 
    supposing  (\mneg{}(1  =  0))  \mwedge{}  (\mneg{}(x  =  y))  \mwedge{}  (f(x:=0)  =  f)  \mwedge{}  (g(y:=0)  =  g)  \mwedge{}  (f(y:=0)  =  g(x:=0))



Date html generated: 2018_05_21-PM-10_12_32
Last ObjectModification: 2017_07_26-PM-06_34_58

Theory : power!series


Home Index