Nuprl Lemma : consensus-ts5-true-knowledge

[V:Type]
  ∀A:Id List. ∀W:{a:Id| (a ∈ A)}  List List. ∀x:ts-reachable(consensus-ts5(V;A;W)).
    let x1,x2 
    in ∀a,b:{a:Id| (a ∈ A)} .
         let I,z Knowledge(x2;a)(b) 
         in (I ≤ Inning(x1;b))
            ∧ case z
               of inl(p) =>
               let k,v 
               in k < I
                  ∧ (↑k ∈ dom(Estimate(x1;b)))
                  ∧ (Estimate(x1;b)(k) v ∈ V)
                  ∧ (∀i:ℤ. ¬↑i ∈ dom(Estimate(x1;b)) supposing k < i ∧ i < I)
               inr(p) =>
               ∀i:ℤ. ¬↑i ∈ dom(Estimate(x1;b)) supposing i < 
         supposing ↑b ∈ dom(Knowledge(x2;a))


Proof




Definitions occuring in Statement :  consensus-ts5: consensus-ts5(V;A;W) cs-knowledge: Knowledge(x;a) cs-estimate: Estimate(s;a) cs-inning: Inning(s;a) fpf-ap: f(x) fpf-dom: x ∈ dom(f) id-deq: IdDeq Id: Id int-deq: IntDeq l_member: (x ∈ l) list: List assert: b less_than: a < b uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  spread: spread def decide: case of inl(x) => s[x] inr(y) => t[y] int: universe: Type equal: t ∈ T ts-reachable: ts-reachable(ts)
Lemmas :  ts-reachable-induction consensus-ts5_wf subtype_rel_self consensus-state4_wf consensus-state5_wf all_wf l_member_wf isect_wf assert_wf fpf-dom_wf id-deq_wf cs-knowledge_wf subtype-fpf2 subtype_top top_wf fpf-ap_wf le_wf cs-inning_wf less_than_wf int-deq_wf cs-estimate_wf consensus-state4-subtype not_wf ts-reachable_wf subtype_rel_wf ts-type_wf list_wf Id_wf sq_stable__all fpf_wf set_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot sq_stable__uall false_wf true_wf sq_stable__and sq_stable__le sq_stable__less_than sq_stable_from_decidable decidable__true sq_stable__equal sq_stable__not squash_wf member-less_than decidable__false decide_bfalse_lemma deq_member_nil_lemma subtype_rel-deq sq_stable__l_member decidable__equal_Id mk_fpf_wf list-subtype infix_ap_wf ts-rel_wf subtype_rel-equal assert_witness member_wf and_wf assert_elim atom2_subtype_base decidable__le not-le-2 condition-implies-le minus-add minus-one-mul add-swap add-commutes le_antisymmetry_iff add_functionality_wrt_le add-associates le-add-cancel le_transitivity le_weakening fpf-join-dom fpf-single_wf equal-wf-base-T int_subtype_base fpf-single-dom or_wf fpf-join-ap-sq equal-wf-T-base bnot_wf uiff_transitivity assert_of_bnot less_than_transitivity1 less_than_irreflexivity deq_wf fpf_ap_single_lemma it_wf assert_functionality_wrt_uiff eq_id_wf fpf-single-dom-sq assert-eq-id iff_transitivity iff_weakening_uiff equal_functionality_wrt_subtype_rel2 fpf-join-ap iff_weakening_equal
\mforall{}[V:Type]
    \mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.  \mforall{}x:ts-reachable(consensus-ts5(V;A;W)).
        let  x1,x2  =  x 
        in  \mforall{}a,b:\{a:Id|  (a  \mmember{}  A)\}  .
                  let  I,z  =  Knowledge(x2;a)(b) 
                  in  (I  \mleq{}  Inning(x1;b))
                        \mwedge{}  case  z
                              of  inl(p)  =>
                              let  k,v  =  p 
                              in  k  <  I
                                    \mwedge{}  (\muparrow{}k  \mmember{}  dom(Estimate(x1;b)))
                                    \mwedge{}  (Estimate(x1;b)(k)  =  v)
                                    \mwedge{}  (\mforall{}i:\mBbbZ{}.  \mneg{}\muparrow{}i  \mmember{}  dom(Estimate(x1;b))  supposing  k  <  i  \mwedge{}  i  <  I)
                              |  inr(p)  =>
                              \mforall{}i:\mBbbZ{}.  \mneg{}\muparrow{}i  \mmember{}  dom(Estimate(x1;b))  supposing  i  <  I 
                  supposing  \muparrow{}b  \mmember{}  dom(Knowledge(x2;a))



Date html generated: 2015_07_17-AM-11_41_53
Last ObjectModification: 2015_07_16-AM-10_19_03

Home Index