Nuprl Lemma : fpf-vals-singleton

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[P:A ─→ 𝔹]. ∀[f:x:A fp-> B[x]]. ∀[a:A].
  (fpf-vals(eq;P;f) [<a, f(a)>] ∈ ((x:A × B[x]) List)) supposing ((∀b:A. (↑(P b) ⇐⇒ a ∈ A)) and (↑a ∈ dom(f)))


Proof




Definitions occuring in Statement :  fpf-vals: fpf-vals(eq;P;f) fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) cons: [a b] nil: [] list: List assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q apply: a function: x:A ─→ B[x] pair: <a, b> product: x:A × B[x] universe: Type equal: t ∈ T
Lemmas :  fpf_ap_pair_lemma all_wf iff_wf assert_wf equal_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf_wf bool_wf deq_wf remove-repeats_property assert-deq-member deq-member_wf equal-wf-T-base l_member_wf bnot_wf not_wf cons_wf iff_transitivity iff_weakening_uiff eqtt_to_assert eqff_to_assert assert_of_bnot nil_wf nil_member false_wf filter_nil_lemma no_repeats_wf cons_member filter_cons_lemma no_repeats_cons uiff_transitivity or_wf list_induction filter_wf5 subtype_rel_dep_function subtype_rel_self set_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot list_wf and_wf remove-repeats_wf bool_cases nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf colength_wf_list list-cases equal-wf-base-T product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap set_subtype_base int_subtype_base reduce_hd_cons_lemma hd_wf squash_wf length_wf listp_properties cons_wf_listp null_nil_lemma btrue_wf reduce_tl_cons_lemma tl_wf null_wf3 subtype_rel_list null_cons_lemma bfalse_wf btrue_neq_bfalse map_cons_lemma map_nil_lemma zip_cons_cons_lemma zip_nil_lemma member-remove-repeats
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[a:A].
    (fpf-vals(eq;P;f)  =  [<a,  f(a)>])  supposing  ((\mforall{}b:A.  (\muparrow{}(P  b)  \mLeftarrow{}{}\mRightarrow{}  b  =  a))  and  (\muparrow{}a  \mmember{}  dom(f)))



Date html generated: 2015_07_17-AM-11_09_52
Last ObjectModification: 2015_01_28-AM-07_48_31

Home Index