Nuprl Lemma : ip-triangle-implies-separated

rv:InnerProductSpace. ∀a,b,c:Point.  (a;b;c)  c)


Proof




Definitions occuring in Statement :  ip-triangle: Δ(a;b;c) inner-product-space: InnerProductSpace ss-sep: y ss-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q ip-triangle: Δ(a;b;c) member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uall: [x:A]. B[x] subtype_rel: A ⊆B prop: guard: {T} uimplies: supposing a rv-sub: y rv-minus: -x uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A nat_plus: + less_than: a < b squash: T true: True cand: c∧ B itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top
Lemmas referenced :  rv-sep-iff rv-norm-positive-iff rv-sub_wf inner-product-space_subtype ip-triangle_wf ss-point_wf real-vector-space_subtype1 subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf ss-eq_wf rv-add_wf rv-mul_wf int-to-real_wf radd_wf rmul_wf rv-minus_wf rv-0_wf rv-norm_wf real_wf rleq_wf req_wf rv-ip_wf rless_wf rabs_wf equal_wf uiff_transitivity ss-eq_functionality ss-eq_weakening rv-add_functionality rv-mul-linear rv-add-assoc rv-mul-mul rv-add-swap rv-mul-add-alt rv-mul_functionality req_transitivity radd_functionality rmul-int req_weakening radd-int rv-mul0 rv-0-add rless_functionality rv-norm_functionality square-rless-implies rv-norm-nonneg rnexp_wf false_wf le_wf less_than_wf rsub_wf rnexp-rless zero-rleq-rabs rnexp0 rv-norm-squared rv-ip-sub-squared req_inversion rsub_functionality rnexp2-nonneg rabs-rnexp rnexp-rmul rabs-of-nonneg radd-preserves-rleq rleq_functionality real_term_polynomial itermSubtract_wf itermAdd_wf itermMultiply_wf itermConstant_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rmul_preserves_rless rless-int rnexp2 rless_transitivity1 radd-preserves-rless radd-non-neg rmul_functionality rless-implies-rless
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality productElimination independent_functionElimination because_Cache isectElimination applyEquality hypothesis sqequalRule instantiate independent_isectElimination minusEquality natural_numberEquality lambdaEquality setElimination rename setEquality productEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  a  \#  c)



Date html generated: 2017_10_04-PM-11_58_43
Last ObjectModification: 2017_07_28-AM-08_54_37

Theory : inner!product!spaces


Home Index