Nuprl Lemma : ip-triangle-implies-separated
∀rv:InnerProductSpace. ∀a,b,c:Point.  (Δ(a;b;c) 
⇒ a # c)
Proof
Definitions occuring in Statement : 
ip-triangle: Δ(a;b;c)
, 
inner-product-space: InnerProductSpace
, 
ss-sep: x # y
, 
ss-point: Point
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
ip-triangle: Δ(a;b;c)
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
guard: {T}
, 
uimplies: b supposing a
, 
rv-sub: x - y
, 
rv-minus: -x
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
cand: A c∧ B
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
top: Top
Lemmas referenced : 
rv-sep-iff, 
rv-norm-positive-iff, 
rv-sub_wf, 
inner-product-space_subtype, 
ip-triangle_wf, 
ss-point_wf, 
real-vector-space_subtype1, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
ss-eq_wf, 
rv-add_wf, 
rv-mul_wf, 
int-to-real_wf, 
radd_wf, 
rmul_wf, 
rv-minus_wf, 
rv-0_wf, 
rv-norm_wf, 
real_wf, 
rleq_wf, 
req_wf, 
rv-ip_wf, 
rless_wf, 
rabs_wf, 
equal_wf, 
uiff_transitivity, 
ss-eq_functionality, 
ss-eq_weakening, 
rv-add_functionality, 
rv-mul-linear, 
rv-add-assoc, 
rv-mul-mul, 
rv-add-swap, 
rv-mul-add-alt, 
rv-mul_functionality, 
req_transitivity, 
radd_functionality, 
rmul-int, 
req_weakening, 
radd-int, 
rv-mul0, 
rv-0-add, 
rless_functionality, 
rv-norm_functionality, 
square-rless-implies, 
rv-norm-nonneg, 
rnexp_wf, 
false_wf, 
le_wf, 
less_than_wf, 
rsub_wf, 
rnexp-rless, 
zero-rleq-rabs, 
rnexp0, 
rv-norm-squared, 
rv-ip-sub-squared, 
req_inversion, 
rsub_functionality, 
rnexp2-nonneg, 
rabs-rnexp, 
rnexp-rmul, 
rabs-of-nonneg, 
radd-preserves-rleq, 
rleq_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
req-iff-rsub-is-0, 
rmul_preserves_rless, 
rless-int, 
rnexp2, 
rless_transitivity1, 
radd-preserves-rless, 
radd-non-neg, 
rmul_functionality, 
rless-implies-rless
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
isectElimination, 
applyEquality, 
hypothesis, 
sqequalRule, 
instantiate, 
independent_isectElimination, 
minusEquality, 
natural_numberEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
computeAll, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}rv:InnerProductSpace.  \mforall{}a,b,c:Point.    (\mDelta{}(a;b;c)  {}\mRightarrow{}  a  \#  c)
Date html generated:
2017_10_04-PM-11_58_43
Last ObjectModification:
2017_07_28-AM-08_54_37
Theory : inner!product!spaces
Home
Index