Nuprl Lemma : Cauchy-Schwarz-proof2
∀[n:ℕ]. ∀[x,y:ℝ^n].  (|x⋅y| ≤ (||x|| * ||y||))
Proof
Definitions occuring in Statement : 
real-vec-norm: ||x||
, 
dot-product: x⋅y
, 
real-vec: ℝ^n
, 
rleq: x ≤ y
, 
rabs: |x|
, 
rmul: a * b
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
stable: Stable{P}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
prop: ℙ
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
all: ∀x:A. B[x]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
nat: ℕ
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
iff: P 
⇐⇒ Q
, 
real-vec-sub: X - Y
, 
real-vec-add: X + Y
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
rsub: x - y
Lemmas referenced : 
stable__rleq, 
rabs_wf, 
dot-product_wf, 
rmul_wf, 
real-vec-norm_wf, 
less_than'_wf, 
rsub_wf, 
real_wf, 
nat_plus_wf, 
real-vec_wf, 
nat_wf, 
false_wf, 
or_wf, 
rneq_wf, 
int-to-real_wf, 
not_wf, 
rleq_wf, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle, 
real-vec-norm-nonneg, 
rless_transitivity1, 
rless_irreflexivity, 
square-rleq-implies, 
rmul-nonneg-case1, 
rnexp_wf, 
le_wf, 
rnexp2-nonneg, 
rleq_functionality, 
req_inversion, 
rabs-rnexp, 
req_weakening, 
rabs-of-nonneg, 
rnexp-rmul, 
rmul_functionality, 
real-vec-norm-squared, 
rnexp-positive, 
rless_functionality, 
int_seg_wf, 
req_wf, 
radd_wf, 
real-vec-mul_wf, 
rdiv_wf, 
rless_wf, 
rminus_wf, 
uiff_transitivity, 
req_functionality, 
radd_functionality, 
radd_comm, 
radd-rminus-assoc, 
real-vec-add_wf, 
real-vec-sub_wf, 
dot-product-comm, 
dot-product_functionality, 
req-vec_inversion, 
req_transitivity, 
dot-product-linearity1, 
real-vec-sub_functionality, 
real-vec-mul_functionality, 
req-vec_weakening, 
rdiv_functionality, 
dot-product-linearity1-sub, 
rsub_functionality, 
dot-product-linearity2, 
rnexp_functionality, 
real-vec-norm_functionality, 
rmul-rdiv-cancel2, 
rminus_functionality, 
rmul_comm, 
radd-assoc, 
radd-ac, 
rmul_preserves_req, 
rmul-assoc, 
rmul-ac, 
rmul-rdiv-cancel, 
rnexp2, 
radd-preserves-rleq, 
rminus-as-rmul, 
rmul-identity1, 
rmul-distrib2, 
radd-int, 
rmul-zero-both, 
radd-zero-both, 
rmul_preserves_rleq2, 
not-rneq, 
real-vec-norm-is-0, 
rabs_functionality, 
dot-product-zero, 
rleq_weakening_equal
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
minusEquality, 
natural_numberEquality, 
because_Cache, 
isect_memberFormation, 
dependent_functionElimination, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
voidElimination, 
functionEquality, 
independent_functionElimination, 
lambdaFormation, 
unionElimination, 
independent_pairFormation, 
dependent_set_memberEquality, 
inrFormation, 
addEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|x\mcdot{}y|  \mleq{}  (||x||  *  ||y||))
Date html generated:
2016_10_26-AM-10_22_50
Last ObjectModification:
2016_10_02-PM-07_36_28
Theory : reals
Home
Index