Nuprl Lemma : Cauchy-Schwarz-proof2

[n:ℕ]. ∀[x,y:ℝ^n].  (|x⋅y| ≤ (||x|| ||y||))


Proof




Definitions occuring in Statement :  real-vec-norm: ||x|| dot-product: x⋅y real-vec: ^n rleq: x ≤ y rabs: |x| rmul: b nat: uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T stable: Stable{P} uimplies: supposing a subtype_rel: A ⊆B real: prop: rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False or: P ∨ Q rneq: x ≠ y guard: {T} nat: less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) iff: ⇐⇒ Q real-vec-sub: Y real-vec-add: Y req-vec: req-vec(n;x;y) real-vec: ^n rsub: y
Lemmas referenced :  stable__rleq rabs_wf dot-product_wf rmul_wf real-vec-norm_wf less_than'_wf rsub_wf real_wf nat_plus_wf real-vec_wf nat_wf false_wf or_wf rneq_wf int-to-real_wf not_wf rleq_wf minimal-double-negation-hyp-elim minimal-not-not-excluded-middle real-vec-norm-nonneg rless_transitivity1 rless_irreflexivity square-rleq-implies rmul-nonneg-case1 rnexp_wf le_wf rnexp2-nonneg rleq_functionality req_inversion rabs-rnexp req_weakening rabs-of-nonneg rnexp-rmul rmul_functionality real-vec-norm-squared rnexp-positive rless_functionality int_seg_wf req_wf radd_wf real-vec-mul_wf rdiv_wf rless_wf rminus_wf uiff_transitivity req_functionality radd_functionality radd_comm radd-rminus-assoc real-vec-add_wf real-vec-sub_wf dot-product-comm dot-product_functionality req-vec_inversion req_transitivity dot-product-linearity1 real-vec-sub_functionality real-vec-mul_functionality req-vec_weakening rdiv_functionality dot-product-linearity1-sub rsub_functionality dot-product-linearity2 rnexp_functionality real-vec-norm_functionality rmul-rdiv-cancel2 rminus_functionality rmul_comm radd-assoc radd-ac rmul_preserves_req rmul-assoc rmul-ac rmul-rdiv-cancel rnexp2 radd-preserves-rleq rminus-as-rmul rmul-identity1 rmul-distrib2 radd-int rmul-zero-both radd-zero-both rmul_preserves_rleq2 not-rneq real-vec-norm-is-0 rabs_functionality dot-product-zero rleq_weakening_equal
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination thin hypothesisEquality hypothesis independent_isectElimination applyEquality lambdaEquality setElimination rename sqequalRule minusEquality natural_numberEquality because_Cache isect_memberFormation dependent_functionElimination productElimination independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidElimination functionEquality independent_functionElimination lambdaFormation unionElimination independent_pairFormation dependent_set_memberEquality inrFormation addEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[x,y:\mBbbR{}\^{}n].    (|x\mcdot{}y|  \mleq{}  (||x||  *  ||y||))



Date html generated: 2016_10_26-AM-10_22_50
Last ObjectModification: 2016_10_02-PM-07_36_28

Theory : reals


Home Index