Nuprl Lemma : continuous-range-totally-bounded

I:Interval. ∀f:I ⟶ℝ.
  (f[x] continuous for x ∈  (∀m:ℕ+(i-nonvoid(i-approx(I;m))  totally-bounded(f[x](x∈i-approx(I;m))))))


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rrange: f[x](x∈I) i-nonvoid: i-nonvoid(I) rfun: I ⟶ℝ i-approx: i-approx(I;n) interval: Interval totally-bounded: totally-bounded(A) nat_plus: + so_apply: x[s] all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I member: t ∈ T icompact: icompact(I) and: P ∧ Q cand: c∧ B uall: [x:A]. B[x] prop: totally-bounded: totally-bounded(A) exists: x:A. B[x] sq_exists: x:{A| B[x]} subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] rfun: I ⟶ℝ nat_plus: + rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top label: ...$L... t sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B squash: T subinterval: I ⊆  int_seg: {i..j-} lelt: i ≤ j < k real: less_than: a < b full-partition: full-partition(I;p) partition: partition(I) less_than': less_than'(a;b) true: True uiff: uiff(P;Q) l_all: (∀x∈L.P[x]) rrange: f[x](x∈I) rset-member: x ∈ A r-ap: f(x)
Lemmas referenced :  i-approx-closed i-approx-finite icompact_wf i-approx_wf small-reciprocal-real rless_wf int-to-real_wf i-approx-is-subinterval interval_wf rfun_subtype rfun_wf all_wf i-member_wf rleq_wf rabs_wf rsub_wf rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf equal_wf subinterval_wf real_wf i-nonvoid_wf nat_plus_wf continuous_wf less_than'_wf squash_wf sq_stable__and sq_stable__rless sq_stable__all sq_stable__rleq partition-exists r-ap_wf select_wf full-partition_wf int_seg_properties length_wf sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma int_seg_wf rset-member_wf rrange_wf exists_wf length_of_cons_lemma append_wf cons_wf right-endpoint_wf add_nat_plus length_wf_nat nil_wf less_than_wf length-append length_of_nil_lemma add-is-int-iff itermAdd_wf intformeq_wf int_term_value_add_lemma int_formula_prop_eq_lemma false_wf full-partition-point-member req_weakening req_wf mesh-property rless_transitivity2 rleq_functionality rabs_functionality rsub_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependent_functionElimination thin dependent_set_memberEquality hypothesisEquality cut hypothesis independent_pairFormation introduction extract_by_obid because_Cache isectElimination natural_numberEquality productElimination setElimination rename applyEquality independent_isectElimination sqequalRule productEquality lambdaEquality functionEquality inrFormation independent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry setEquality minusEquality independent_pairEquality axiomEquality imageMemberEquality baseClosed imageElimination addEquality functionExtensionality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply closedConclusion

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I
    {}\mRightarrow{}  (\mforall{}m:\mBbbN{}\msupplus{}.  (i-nonvoid(i-approx(I;m))  {}\mRightarrow{}  totally-bounded(f[x](x\mmember{}i-approx(I;m))))))



Date html generated: 2017_10_03-AM-10_23_25
Last ObjectModification: 2017_07_28-AM-08_07_41

Theory : reals


Home Index