Nuprl Lemma : real-vec-between-inner-trans
∀n:ℕ. ∀a,b,c,d:ℝ^n.  (a-b-d ⇒ b-c-d ⇒ a-b-c)
Proof
Definitions occuring in Statement : 
real-vec-between: a-b-c, 
real-vec: ℝ^n, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
real-vec-between: a-b-c, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
rev_implies: P ⇐ Q, 
guard: {T}, 
iff: P ⇐⇒ Q, 
cand: A c∧ B, 
top: Top, 
rsub: x - y, 
rneq: x ≠ y, 
or: P ∨ Q, 
rooint: (l, u), 
i-member: r ∈ I, 
real-vec-mul: a*X, 
real-vec-add: X + Y, 
req-vec: req-vec(n;x;y), 
nat: ℕ, 
real-vec: ℝ^n, 
rev_uimplies: rev_uimplies(P;Q), 
true: True, 
squash: ↓T, 
subtype_rel: A ⊆r B, 
itermConstant: "const", 
req_int_terms: t1 ≡ t2, 
false: False, 
not: ¬A, 
real_term_value: real_term_value(f;t), 
int_term_ind: int_term_ind, 
itermSubtract: left (-) right, 
itermAdd: left (+) right, 
itermMinus: "-"num, 
itermMultiply: left (*) right, 
itermVar: vvar
Lemmas referenced : 
exists_wf, 
real_wf, 
i-member_wf, 
rooint_wf, 
int-to-real_wf, 
req-vec_wf, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
real-vec_wf, 
nat_wf, 
req-vec_functionality, 
req-vec_weakening, 
real-vec-add_functionality, 
real-vec-mul_functionality, 
req_weakening, 
rmul-one-both, 
rmul_comm, 
rmul-zero-both, 
rless_functionality, 
rleq_weakening_rless, 
rless_transitivity2, 
rmul_wf, 
rmul_preserves_rless, 
member_rooint_lemma, 
radd-preserves-rless, 
radd_wf, 
rminus_wf, 
rless_wf, 
radd-zero-both, 
radd_functionality, 
radd-rminus-both, 
radd_comm, 
radd-ac, 
rminus_functionality, 
rdiv_wf, 
rmul-rdiv-cancel2, 
rmul_over_rminus, 
rmul-distrib, 
req_transitivity, 
rminus-zero, 
equal_wf, 
int_seg_wf, 
req_functionality, 
rmul_functionality, 
req_wf, 
uiff_transitivity, 
rmul-distrib1, 
rmul-assoc, 
rminus-rminus, 
req_inversion, 
radd-assoc, 
radd-rminus-assoc, 
rmul-ac, 
rminus-radd, 
rminus-as-rmul, 
rmul_preserves_req, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
rdiv_functionality, 
real_term_polynomial, 
itermSubtract_wf, 
itermAdd_wf, 
itermMinus_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
radd-int, 
rmul-distrib2, 
rmul-identity1, 
radd-preserves-req
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
lambdaEquality, 
productEquality, 
natural_numberEquality, 
hypothesisEquality, 
because_Cache, 
rename, 
independent_isectElimination, 
addLevel, 
existsFunctionality, 
independent_pairFormation, 
andLevelFunctionality, 
promote_hyp, 
independent_functionElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
levelHypothesis, 
dependent_pairFormation, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
applyEquality, 
minusEquality, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
computeAll, 
int_eqEquality, 
intEquality, 
addEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b,c,d:\mBbbR{}\^{}n.    (a-b-d  {}\mRightarrow{}  b-c-d  {}\mRightarrow{}  a-b-c)
 Date html generated: 
2017_10_03-AM-10_48_31
 Last ObjectModification: 
2017_07_28-AM-08_20_10
Theory : reals
Home
Index