Nuprl Lemma : stump-monotone

T:Type. ∀t:wfd-tree(T). ∀n:ℕ. ∀s:ℕn ⟶ T.  ((¬↑(stump(t) s))  (∀x:T. (¬↑(stump(t) (n 1) s++x))))


Proof




Definitions occuring in Statement :  stump: stump(t) wfd-tree: wfd-tree(T) seq-adjoin: s++t int_seg: {i..j-} nat: assert: b all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] nat: implies:  Q prop: decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) squash: T subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True so_apply: x[s] stump: stump(t) assert: b ifthenelse: if then else fi  bfalse: ff bool: 𝔹 unit: Unit it: btrue: tt exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb int_seg: {i..j-} lelt: i ≤ j < k nequal: a ≠ b ∈  ge: i ≥  int_upper: {i...} seq-adjoin: s++t seq-append: seq-append(n;m;s1;s2) less_than: a < b
Lemmas referenced :  wfd-tree-induction all_wf nat_wf int_seg_wf not_wf assert_wf stump_wf decidable__le false_wf not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel le_wf seq-adjoin_wf wfd-tree_wf wfd_tree_rec_leaf_lemma wfd_tree_rec_node_lemma eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__lt not-lt-2 not-equal-2 lelt_wf subtract_wf minus-minus add-member-int_seg2 le-add-cancel2 int_upper_subtype_nat nat_properties nequal-le-implies lt_int_wf eqtt_to_assert assert_of_lt_int top_wf less_than_wf assert_of_eq_int le_antisymmetry_iff minus-zero less-iff-le less_than_transitivity1 le_weakening less_than_irreflexivity bnot_wf equal-wf-T-base bool_cases iff_transitivity iff_weakening_uiff assert_of_bnot squash_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality hypothesis functionEquality natural_numberEquality setElimination rename because_Cache cumulativity applyEquality functionExtensionality dependent_set_memberEquality addEquality unionElimination independent_pairFormation voidElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed imageElimination isect_memberEquality voidEquality intEquality minusEquality equalityElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp instantiate hypothesis_subsumption universeEquality lessCases isect_memberFormation sqequalAxiom impliesFunctionality hyp_replacement

Latex:
\mforall{}T:Type.  \mforall{}t:wfd-tree(T).  \mforall{}n:\mBbbN{}.  \mforall{}s:\mBbbN{}n  {}\mrightarrow{}  T.
    ((\mneg{}\muparrow{}(stump(t)  n  s))  {}\mRightarrow{}  (\mforall{}x:T.  (\mneg{}\muparrow{}(stump(t)  (n  +  1)  s++x))))



Date html generated: 2017_04_14-AM-07_45_21
Last ObjectModification: 2017_02_27-PM-03_17_23

Theory : co-recursion


Home Index