Nuprl Lemma : Veldman-Coquand
∀X:Type. ∀n:ℕ. ∀p,q:wfd-tree(X).
  ∀[A,B:n:ℕ ⟶ (ℕn ⟶ X) ⟶ ℙ]. ∀[R,S:n-aryRel(X)].
    (tree-secures(X;λm,s. ((A m s) ∨ ([[R]] m s));p)
    ⇒ tree-secures(X;λm,s. ((B m s) ∨ ([[S]] m s));q)
    ⇒ tree-secures(X;λm,s. (((A m s) ∨ (B m s)) ∨ (([[R]] m s) ∧ ([[S]] m s)));tree-tensor(n;p;q)))
Proof
Definitions occuring in Statement : 
tree-tensor: tree-tensor(n;p;q), 
tree-secures: tree-secures(T;A;p), 
nary-rel-predicate: [[R]], 
nary-rel: n-aryRel(T), 
wfd-tree: wfd-tree(T), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
or: P ∨ Q, 
and: P ∧ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
prop: ℙ, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
implies: P ⇒ Q, 
so_apply: x[s], 
guard: {T}, 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
wfd-tree: wfd-tree(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
bfalse: ff, 
Wsup: Wsup(a;b), 
tree-secures: tree-secures(T;A;p), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
tree-tensor: tree-tensor(n;p;q), 
eq_int: (i =z j), 
subtract: n - m, 
cand: A c∧ B, 
nary-rel-predicate: [[R]], 
nary-rel: n-aryRel(T), 
ge: i ≥ j , 
predicate-or-shift: A[x], 
predicate-shift: A_x, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
true: True, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
seq-append: seq-append(n;m;s1;s2), 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
wfd-tree-induction, 
all_wf, 
wfd-tree_wf, 
uall_wf, 
nat_wf, 
int_seg_wf, 
nary-rel_wf, 
false_wf, 
le_wf, 
tree-secures_wf, 
or_wf, 
nary-rel-predicate_wf, 
tree-tensor_wf, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
subtype_rel_self, 
set_wf, 
less_than_wf, 
primrec-wf2, 
Wsup_wf, 
bool_wf, 
eqtt_to_assert, 
equal_wf, 
btrue_wf, 
void_wf, 
int_seg_properties, 
trivial-tree-secures, 
tree-secures_functionality, 
nat_properties, 
ifthenelse_wf, 
bfalse_wf, 
predicate-or-shift_wf, 
seq-append_wf, 
subtype_rel_function, 
int_seg_subtype, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
add-zero, 
add-commutes, 
le-add-cancel2, 
add-is-int-iff, 
set_subtype_base, 
int_subtype_base, 
itermAdd_wf, 
int_term_value_add_lemma, 
seq-single_wf, 
eq_int_wf, 
assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
W_wf, 
lelt_wf, 
top_wf, 
decidable__lt, 
predicate-shift_wf, 
lt_int_wf, 
assert_of_lt_int, 
not_functionality_wrt_uiff, 
assert_wf, 
decidable__equal_int
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
universeEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
functionExtensionality, 
productEquality, 
independent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
equalityElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation, 
inrFormation, 
hyp_replacement, 
addEquality, 
minusEquality, 
multiplyEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
promote_hyp, 
lessCases, 
imageMemberEquality, 
axiomSqEquality, 
imageElimination
Latex:
\mforall{}X:Type.  \mforall{}n:\mBbbN{}.  \mforall{}p,q:wfd-tree(X).
    \mforall{}[A,B:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  X)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R,S:n-aryRel(X)].
        (tree-secures(X;\mlambda{}m,s.  ((A  m  s)  \mvee{}  ([[R]]  m  s));p)
        {}\mRightarrow{}  tree-secures(X;\mlambda{}m,s.  ((B  m  s)  \mvee{}  ([[S]]  m  s));q)
        {}\mRightarrow{}  tree-secures(X;\mlambda{}m,s.  (((A  m  s)  \mvee{}  (B  m  s))  \mvee{}  (([[R]]  m  s)  \mwedge{}  ([[S]]  m  s)));tree-tensor(n;p;q)))
Date html generated:
2019_06_20-PM-02_45_53
Last ObjectModification:
2018_09_17-PM-11_02_31
Theory : fan-theorem
Home
Index