Nuprl Lemma : Veldman-Coquand

X:Type. ∀n:ℕ. ∀p,q:wfd-tree(X).
  ∀[A,B:n:ℕ ⟶ (ℕn ⟶ X) ⟶ ℙ]. ∀[R,S:n-aryRel(X)].
    (tree-secures(X;λm,s. ((A s) ∨ ([[R]] s));p)
     tree-secures(X;λm,s. ((B s) ∨ ([[S]] s));q)
     tree-secures(X;λm,s. (((A s) ∨ (B s)) ∨ (([[R]] s) ∧ ([[S]] s)));tree-tensor(n;p;q)))


Proof




Definitions occuring in Statement :  tree-tensor: tree-tensor(n;p;q) tree-secures: tree-secures(T;A;p) nary-rel-predicate: [[R]] nary-rel: n-aryRel(T) wfd-tree: wfd-tree(T) int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q apply: a lambda: λx.A[x] function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B nat: prop: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q so_apply: x[s] guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top wfd-tree: wfd-tree(T) bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) bfalse: ff Wsup: Wsup(a;b) tree-secures: tree-secures(T;A;p) int_seg: {i..j-} lelt: i ≤ j < k tree-tensor: tree-tensor(n;p;q) eq_int: (i =z j) subtract: m cand: c∧ B nary-rel-predicate: [[R]] nary-rel: n-aryRel(T) ge: i ≥  predicate-or-shift: A[x] predicate-shift: A_x iff: ⇐⇒ Q rev_implies:  Q true: True sq_type: SQType(T) bnot: ¬bb assert: b seq-append: seq-append(n;m;s1;s2) less_than: a < b squash: T
Lemmas referenced :  wfd-tree-induction all_wf wfd-tree_wf uall_wf nat_wf int_seg_wf nary-rel_wf false_wf le_wf tree-secures_wf or_wf nary-rel-predicate_wf tree-tensor_wf decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_rel_self set_wf less_than_wf primrec-wf2 Wsup_wf bool_wf eqtt_to_assert equal_wf btrue_wf void_wf int_seg_properties trivial-tree-secures tree-secures_functionality nat_properties ifthenelse_wf bfalse_wf predicate-or-shift_wf seq-append_wf subtype_rel_function int_seg_subtype not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 add-is-int-iff set_subtype_base int_subtype_base itermAdd_wf int_term_value_add_lemma seq-single_wf eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int W_wf lelt_wf top_wf decidable__lt predicate-shift_wf lt_int_wf assert_of_lt_int not_functionality_wrt_uiff assert_wf decidable__equal_int
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality hypothesis applyEquality because_Cache functionEquality natural_numberEquality setElimination rename universeEquality dependent_set_memberEquality independent_pairFormation functionExtensionality productEquality independent_functionElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality isect_memberFormation equalityElimination productElimination equalityTransitivity equalitySymmetry inlFormation inrFormation hyp_replacement addEquality minusEquality multiplyEquality baseApply closedConclusion baseClosed promote_hyp lessCases imageMemberEquality axiomSqEquality imageElimination

Latex:
\mforall{}X:Type.  \mforall{}n:\mBbbN{}.  \mforall{}p,q:wfd-tree(X).
    \mforall{}[A,B:n:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}n  {}\mrightarrow{}  X)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[R,S:n-aryRel(X)].
        (tree-secures(X;\mlambda{}m,s.  ((A  m  s)  \mvee{}  ([[R]]  m  s));p)
        {}\mRightarrow{}  tree-secures(X;\mlambda{}m,s.  ((B  m  s)  \mvee{}  ([[S]]  m  s));q)
        {}\mRightarrow{}  tree-secures(X;\mlambda{}m,s.  (((A  m  s)  \mvee{}  (B  m  s))  \mvee{}  (([[R]]  m  s)  \mwedge{}  ([[S]]  m  s)));tree-tensor(n;p;q)))



Date html generated: 2019_06_20-PM-02_45_53
Last ObjectModification: 2018_09_17-PM-11_02_31

Theory : fan-theorem


Home Index