Nuprl Lemma : bigger-int-property
∀[L:ℤ List]. ∀[n:ℤ].  (∀x∈L.x < bigger-int(n;L))
Proof
Definitions occuring in Statement : 
bigger-int: bigger-int(n;L)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
l_all: (∀x∈L.P[x])
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cons: [a / b]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
int_iseg: {i...j}
, 
cand: A c∧ B
, 
bigger-int: bigger-int(n;L)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
has-value: (a)↓
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
sq_type: SQType(T)
, 
bnot: ¬bb
Lemmas referenced : 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
member-less_than, 
select_wf, 
int_seg_properties, 
length_wf, 
bigger-int_wf, 
int_seg_wf, 
le_wf, 
list_wf, 
decidable__le, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
int_seg_subtype, 
false_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
non_neg_length, 
decidable__lt, 
lelt_wf, 
decidable__assert, 
null_wf, 
list-cases, 
l_all_nil, 
nil_wf, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
last-lemma-sq, 
pos_length, 
iff_transitivity, 
not_wf, 
equal-wf-base, 
list_subtype_base, 
int_subtype_base, 
assert_wf, 
bnot_wf, 
assert_of_null, 
iff_weakening_uiff, 
assert_of_bnot, 
firstn_wf, 
length_firstn, 
list_accum_append, 
subtype_rel_list, 
top_wf, 
append_wf, 
cons_wf, 
last_wf, 
length-append, 
length_of_cons_lemma, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
nat_wf, 
length_wf_nat, 
l_all_wf, 
l_member_wf, 
equal_wf, 
list_accum_cons_lemma, 
list_accum_nil_lemma, 
value-type-has-value, 
int-value-type, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
l_all_single, 
l_all_append
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
lambdaFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
because_Cache, 
productElimination, 
imageElimination, 
unionElimination, 
applyEquality, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
promote_hyp, 
baseClosed, 
impliesFunctionality, 
productEquality, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
setEquality, 
callbyvalueReduce, 
equalityElimination, 
instantiate, 
cumulativity, 
addLevel, 
levelHypothesis, 
andLevelFunctionality
Latex:
\mforall{}[L:\mBbbZ{}  List].  \mforall{}[n:\mBbbZ{}].    (\mforall{}x\mmember{}L.x  <  bigger-int(n;L))
Date html generated:
2017_04_17-AM-07_48_49
Last ObjectModification:
2017_02_27-PM-04_23_02
Theory : list_1
Home
Index