Nuprl Lemma : divisibility-by-2-rule
∀n:ℕ+. ∀a:ℕn ⟶ ℤ. (2 | Σi<n.a[i]*10^i
⇐⇒ 2 | a[0])
Proof
Definitions occuring in Statement :
power-sum: Σi<n.a[i]*x^i
,
divides: b | a
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat_plus: ℕ+
,
eqmod: a ≡ b mod m
,
divides: b | a
,
exists: ∃x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
not: ¬A
,
implies: P
⇒ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
top: Top
,
subtract: n - m
,
prop: ℙ
,
false: False
,
subtype_rel: A ⊆r B
,
power-sum: Σi<n.a[i]*x^i
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
rev_implies: P
⇐ Q
,
iff: P
⇐⇒ Q
,
sq_type: SQType(T)
,
guard: {T}
,
squash: ↓T
,
true: True
,
nat: ℕ
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
bnot: ¬bb
,
assert: ↑b
,
nequal: a ≠ b ∈ T
Lemmas referenced :
int_seg_wf,
istype-int,
nat_plus_wf,
nat_plus_properties,
decidable__equal_int,
full-omega-unsat,
intformnot_wf,
intformeq_wf,
itermSubtract_wf,
itermConstant_wf,
itermMultiply_wf,
int_formula_prop_not_lemma,
istype-void,
int_formula_prop_eq_lemma,
int_term_value_subtract_lemma,
int_term_value_constant_lemma,
int_term_value_mul_lemma,
int_formula_prop_wf,
int_subtype_base,
power-sum_wf,
nat_plus_subtype_nat,
eqmod_wf,
istype-false,
decidable__lt,
intformand_wf,
intformless_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
le_wf,
less_than_wf,
eqmod_functionality_wrt_eqmod,
power-sum_functionality_wrt_eqmod,
eqmod_weakening,
subtype_base_sq,
isolate_summand,
exp_wf2,
int_seg_subtype_nat,
equal_wf,
squash_wf,
true_wf,
istype-universe,
subtype_rel_self,
iff_weakening_equal,
exp0_lemma,
sum_wf,
nat_wf,
eq_int_wf,
eqtt_to_assert,
assert_of_eq_int,
eqff_to_assert,
set_subtype_base,
lelt_wf,
bool_cases_sqequal,
bool_subtype_base,
assert-bnot,
neg_assert_of_eq_int,
zero_ann_a,
exp-zero,
not-lt-2,
not-equal-2,
add_functionality_wrt_le,
add-associates,
add-zero,
zero-add,
le-add-cancel,
condition-implies-le,
add-commutes,
minus-add,
minus-zero,
itermAdd_wf,
int_term_value_add_lemma,
add_functionality_wrt_eq,
sum_constant,
divides_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
functionIsType,
universeIsType,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
natural_numberEquality,
setElimination,
rename,
hypothesisEquality,
hypothesis,
dependent_pairFormation_alt,
dependent_functionElimination,
because_Cache,
unionElimination,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
lambdaEquality_alt,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
equalityIsType4,
inhabitedIsType,
baseClosed,
baseApply,
closedConclusion,
applyEquality,
dependent_set_memberEquality_alt,
independent_pairFormation,
int_eqEquality,
productIsType,
productElimination,
promote_hyp,
instantiate,
cumulativity,
intEquality,
equalityTransitivity,
equalitySymmetry,
multiplyEquality,
imageElimination,
universeEquality,
imageMemberEquality,
equalityElimination,
equalityIsType2,
inrFormation_alt,
addEquality,
minusEquality,
equalityIsType1
Latex:
\mforall{}n:\mBbbN{}\msupplus{}. \mforall{}a:\mBbbN{}n {}\mrightarrow{} \mBbbZ{}. (2 | \mSigma{}i<n.a[i]*10\^{}i \mLeftarrow{}{}\mRightarrow{} 2 | a[0])
Date html generated:
2019_10_15-AM-11_25_58
Last ObjectModification:
2018_10_09-PM-00_15_01
Theory : general
Home
Index