Nuprl Lemma : face-lattice-basis

[T:Type]. ∀[eq:EqDecider(T)]. ∀[x:Point(face-lattice(T;eq))].
  (x \/(λs./\(λu.{{u}}"(s))"(x)) ∈ Point(face-lattice(T;eq)))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-fset-join: \/(s) lattice-fset-meet: /\(s) lattice-point: Point(l) fset-image: f"(s) deq-fset: deq-fset(eq) fset-singleton: {x} union-deq: union-deq(A;B;a;b) deq: EqDecider(T) uall: [x:A]. B[x] lambda: λx.A[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] face-lattice: face-lattice(T;eq) prop: squash: T top: Top implies:  Q subtype_rel: A ⊆B and: P ∧ Q uimplies: supposing a free-dlwc-inc: free-dlwc-inc(eq;a.Cs[a];x) all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False true: True bdd-distributive-lattice: BoundedDistributiveLattice face-lattice0: (x=0) face-lattice1: (x=1) not: ¬A face-lattice-constraints: face-lattice-constraints(x) fset-singleton: {x} fset-filter: {x ∈ P[x]} fset-null: fset-null(s) isl: isl(x) iff_weakening_uiff iff: ⇐⇒ Q deq-f-subset: deq-f-subset(eq) decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability fset-all-iff decidable__assert null: null(as) filter: filter(P;l) reduce: reduce(f;k;as) list_ind: list_ind fset-pair: {a,b} cons: [a b] decidable__fset-member assert-deq-fset-member deq-fset-member: a ∈b s deq-member: x ∈b L bor: p ∨bq union-deq: union-deq(A;B;a;b) sumdeq: sumdeq(a;b) nil: [] f-subset: xs ⊆ ys rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  free-dlwc-basis union-deq_wf face-lattice-constraints_wf equal_wf squash_wf true_wf fl-point-sq istype-void lattice-fset-join_wf face-lattice_wf bdd-distributive-lattice-subtype-bdd-lattice fset-image_wf fset_wf assert_wf fset-antichain_wf fset-all_wf fset-contains-none_wf deq-fset_wf strong-subtype-deq-subtype strong-subtype-set2 lattice-fset-meet_wf fset-null_wf fset-filter_wf deq-f-subset_wf fset-singleton_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot decidable__equal_set decidable__equal_fset decidable__equal_union decidable-equal-deq istype-assert lattice-point_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf lattice-meet_wf lattice-join_wf deq_wf istype-universe face-lattice0_wf face-lattice1_wf filter_cons_lemma filter_nil_lemma fset-pair_wf bfalse_wf btrue_wf btrue_neq_bfalse iff_weakening_uiff f-subset_wf assert-deq-f-subset equal-wf-T-base null_nil_lemma int_subtype_base member-fset-singleton member-fset-pair decidable__f-subset decidable__all_fset decidable_functionality iff_preserves_decidability fset-all-iff decidable__assert decidable__fset-member assert-deq-fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin unionEquality hypothesisEquality hypothesis sqequalRule lambdaEquality_alt unionIsType universeIsType hyp_replacement equalitySymmetry applyEquality imageElimination equalityTransitivity because_Cache isect_memberEquality_alt voidElimination setElimination rename independent_functionElimination productElimination setEquality productEquality independent_isectElimination inhabitedIsType lambdaFormation_alt unionElimination equalityElimination dependent_pairFormation_alt equalityIstype promote_hyp dependent_functionElimination instantiate cumulativity imageMemberEquality baseClosed natural_numberEquality setIsType productIsType isectEquality universeEquality inlEquality_alt inrEquality_alt dependent_set_memberEquality_alt independent_pairFormation applyLambdaEquality functionIsType intEquality inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:Point(face-lattice(T;eq))].    (x  =  \mbackslash{}/(\mlambda{}s./\mbackslash{}(\mlambda{}u.\{\{u\}\}"(s))"(x)))



Date html generated: 2020_05_20-AM-08_51_43
Last ObjectModification: 2019_12_08-PM-07_01_19

Theory : lattices


Home Index