Nuprl Lemma : continuous-rinv
∀I:Interval. ∀f:I ⟶ℝ.  (f[x] continuous for x ∈ I 
⇒ f[x]≠r0 for x ∈ I 
⇒ (r1/f[x]) continuous for x ∈ I)
Proof
Definitions occuring in Statement : 
nonzero-on: f[x]≠r0 for x ∈ I
, 
continuous: f[x] continuous for x ∈ I
, 
rfun: I ⟶ℝ
, 
interval: Interval
, 
rdiv: (x/y)
, 
int-to-real: r(n)
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
continuous: f[x] continuous for x ∈ I
, 
nonzero-on: f[x]≠r0 for x ∈ I
, 
member: t ∈ T
, 
sq_exists: ∃x:{A| B[x]}
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
label: ...$L... t
, 
rfun: I ⟶ℝ
, 
and: P ∧ Q
, 
nat_plus: ℕ+
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
sq_stable: SqStable(P)
, 
rleq: x ≤ y
, 
rnonneg: rnonneg(x)
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
, 
exists: ∃x:A. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
rneq: x ≠ y
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
rless: x < y
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
cand: A c∧ B
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
rdiv: (x/y)
, 
itermConstant: "const"
, 
req_int_terms: t1 ≡ t2
, 
rge: x ≥ y
, 
less_than': less_than'(a;b)
, 
real: ℝ
Lemmas referenced : 
nat_plus_wf, 
set_wf, 
icompact_wf, 
i-approx_wf, 
nonzero-on_wf, 
i-member_wf, 
real_wf, 
continuous_wf, 
rfun_wf, 
interval_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
less_than_wf, 
rleq_wf, 
rabs_wf, 
i-member-approx, 
less_than'_wf, 
rsub_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__rless, 
sq_stable__all, 
sq_stable__rleq, 
small-reciprocal-real, 
rless_transitivity1, 
rdiv_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rleq_weakening_rless, 
rabs-positive-iff, 
mul_nat_plus, 
mul_bounds_1b, 
rneq_wf, 
equal_wf, 
rmul_preserves_rleq, 
rabs-neq-zero, 
rmul_wf, 
radd_wf, 
rminus_wf, 
rinv_wf2, 
rleq_functionality, 
req_transitivity, 
rmul_functionality, 
rabs_functionality, 
rsub_functionality, 
rmul-identity1, 
req_weakening, 
rinv-as-rdiv, 
real_term_polynomial, 
itermSubtract_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermMinus_wf, 
real_term_value_const_lemma, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_minus_lemma, 
req-iff-rsub-is-0, 
radd_functionality, 
rminus_functionality, 
rinv-mul-as-rdiv, 
uiff_transitivity, 
req_inversion, 
rabs-rmul, 
rdiv_functionality, 
rmul-rinv, 
rmul-rinv3, 
rabs-difference-symmetry, 
rleq_functionality_wrt_implies, 
rleq_weakening_equal, 
rmul_preserves_rleq2, 
rleq-int, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
rmul-int, 
false_wf, 
rleq_transitivity, 
rleq-implies-rleq, 
rmul_functionality_wrt_rleq2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
setElimination, 
rename, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
setEquality, 
natural_numberEquality, 
productElimination, 
isect_memberEquality, 
functionEquality, 
because_Cache, 
independent_functionElimination, 
imageElimination, 
minusEquality, 
independent_pairEquality, 
voidElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
inrFormation, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
productEquality, 
multiplyEquality, 
isect_memberFormation, 
inlFormation
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  (r1/f[x])  continuous  for  x  \mmember{}  I)
Date html generated:
2017_10_03-AM-10_27_19
Last ObjectModification:
2017_07_28-AM-08_11_08
Theory : reals
Home
Index