Nuprl Lemma : continuous-rinv

I:Interval. ∀f:I ⟶ℝ.  (f[x] continuous for x ∈  f[x]≠r0 for x ∈  (r1/f[x]) continuous for x ∈ I)


Proof




Definitions occuring in Statement :  nonzero-on: f[x]≠r0 for x ∈ I continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rdiv: (x/y) int-to-real: r(n) so_apply: x[s] all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q continuous: f[x] continuous for x ∈ I nonzero-on: f[x]≠r0 for x ∈ I member: t ∈ T sq_exists: x:{A| B[x]} prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] label: ...$L... t rfun: I ⟶ℝ and: P ∧ Q nat_plus: + squash: T subtype_rel: A ⊆B sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B not: ¬A false: False exists: x:A. B[x] guard: {T} uimplies: supposing a rneq: x ≠ y or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top cand: c∧ B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 rge: x ≥ y less_than': less_than'(a;b) real:
Lemmas referenced :  nat_plus_wf set_wf icompact_wf i-approx_wf nonzero-on_wf i-member_wf real_wf continuous_wf rfun_wf interval_wf rless_wf int-to-real_wf all_wf less_than_wf rleq_wf rabs_wf i-member-approx less_than'_wf rsub_wf squash_wf sq_stable__and sq_stable__rless sq_stable__all sq_stable__rleq small-reciprocal-real rless_transitivity1 rdiv_wf rless-int nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf rleq_weakening_rless rabs-positive-iff mul_nat_plus mul_bounds_1b rneq_wf equal_wf rmul_preserves_rleq rabs-neq-zero rmul_wf radd_wf rminus_wf rinv_wf2 rleq_functionality req_transitivity rmul_functionality rabs_functionality rsub_functionality rmul-identity1 req_weakening rinv-as-rdiv real_term_polynomial itermSubtract_wf itermMultiply_wf itermAdd_wf itermMinus_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma req-iff-rsub-is-0 radd_functionality rminus_functionality rinv-mul-as-rdiv uiff_transitivity req_inversion rabs-rmul rdiv_functionality rmul-rinv rmul-rinv3 rabs-difference-symmetry rleq_functionality_wrt_implies rleq_weakening_equal rmul_preserves_rleq2 rleq-int decidable__le intformle_wf int_formula_prop_le_lemma rmul-int false_wf rleq_transitivity rleq-implies-rleq rmul_functionality_wrt_rleq2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename cut introduction extract_by_obid hypothesis isectElimination sqequalRule lambdaEquality applyEquality dependent_set_memberEquality setEquality natural_numberEquality productElimination isect_memberEquality functionEquality because_Cache independent_functionElimination imageElimination minusEquality independent_pairEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry imageMemberEquality baseClosed independent_isectElimination inrFormation unionElimination dependent_pairFormation int_eqEquality intEquality voidEquality independent_pairFormation computeAll promote_hyp productEquality multiplyEquality isect_memberFormation inlFormation

Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  (r1/f[x])  continuous  for  x  \mmember{}  I)



Date html generated: 2017_10_03-AM-10_27_19
Last ObjectModification: 2017_07_28-AM-08_11_08

Theory : reals


Home Index