Nuprl Lemma : nearby-cases

n:ℕ+. ∀x,y:ℝ.  ((x < y) ∨ (y < x) ∨ (|x y| ≤ (r1/r(n))))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rless: x < y rabs: |x| rsub: y int-to-real: r(n) real: nat_plus: + all: x:A. B[x] or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T nat_plus: + uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] real: rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:A [B[x]] rational-approx: (x within 1/n) int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True nat: cand: c∧ B less_than: a < b less_than': less_than'(a;b) req_int_terms: t1 ≡ t2 sq_type: SQType(T) bool: 𝔹 unit: Unit it: btrue: tt sq_stable: SqStable(P) bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b rdiv: (x/y) rge: x ≥ y le: A ≤ B
Lemmas referenced :  nat_plus_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than set-value-type equal_wf less_than_wf int-value-type real_wf rless_wf rleq_wf rabs_wf rsub_wf rdiv_wf int-to-real_wf rless-int intformeq_wf int_formula_prop_eq_lemma itermAdd_wf int_term_value_add_lemma rational-approx-property int-rdiv_wf int_subtype_base nequal_wf rleq_functionality rabs_functionality rsub_functionality int-rdiv-req req_weakening rsub-rdiv rabs-of-nonneg rleq-int decidable__le intformle_wf int_formula_prop_le_lemma squash_wf true_wf rabs-int subtype_rel_self iff_weakening_equal absval_pos istype-le req_transitivity rabs-rdiv rdiv_functionality rmul-is-positive rmul_wf req_inversion rmul-int absval_wf radd_wf rminus_wf itermSubtract_wf itermMinus_wf rminus-int radd-int req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_var_lemma real_term_value_add_lemma real_term_value_minus_lemma real_term_value_const_lemma subtype_base_sq absval_unfold lt_int_wf eqtt_to_assert assert_of_lt_int istype-top sq_stable__less_than int_term_value_minus_lemma eqff_to_assert bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf zero-rleq-rabs rmul-rdiv rmul-one req_functionality rmul_preserves_rleq rinv_wf2 rmul-rinv3 real_term_value_mul_lemma rleq_functionality_wrt_implies rmul_functionality_wrt_rleq2 rleq_weakening_equal istype-false rmul-rinv rmul_functionality uimplies_transitivity rational-approx_wf r-triangle-inequality2 radd_functionality_wrt_rleq rabs-difference-symmetry uiff_transitivity radd_functionality radd-rdiv rleq-int-fractions
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid hypothesis dependent_set_memberEquality_alt multiplyEquality natural_numberEquality sqequalHypSubstitution setElimination thin rename hypothesisEquality isectElimination dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType cutEval equalityTransitivity equalitySymmetry equalityIstype inhabitedIsType intEquality applyEquality because_Cache addEquality inlFormation_alt unionIsType closedConclusion inrFormation_alt productElimination applyLambdaEquality dependent_set_memberFormation_alt baseApply baseClosed sqequalBase imageElimination imageMemberEquality instantiate universeEquality productIsType minusEquality cumulativity equalityElimination lessCases isect_memberFormation_alt axiomSqEquality isectIsTypeImplies promote_hyp

Latex:
\mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}x,y:\mBbbR{}.    ((x  <  y)  \mvee{}  (y  <  x)  \mvee{}  (|x  -  y|  \mleq{}  (r1/r(n))))



Date html generated: 2019_10_29-AM-10_06_14
Last ObjectModification: 2019_04_01-PM-11_00_37

Theory : reals


Home Index