Nuprl Lemma : r2-left-right
∀a,b,x,y:ℝ^2.  (r2-left(x;a;b) 
⇒ r2-left(y;b;a) 
⇒ (∃z:ℝ^2. (rv-T(2;x;z;y) ∧ (¬rv-pos-angle(2;z;a;b)))))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
rv-T: rv-T(n;a;b;c)
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
prop: ℙ
, 
cand: A c∧ B
, 
rv-T: rv-T(n;a;b;c)
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
req-vec: req-vec(n;x;y)
, 
real-vec: ℝ^n
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
real-vec-mul: a*X
, 
real-vec-add: X + Y
, 
req_int_terms: t1 ≡ t2
, 
top: Top
, 
int_seg: {i..j-}
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
subtype_rel: A ⊆r B
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
rv-pos-angle: rv-pos-angle(n;a;b;c)
, 
nequal: a ≠ b ∈ T 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
eq_int: (i =z j)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
decidable: Dec(P)
, 
rneq: x ≠ y
, 
rdiv: (x/y)
Lemmas referenced : 
r2-left-right-lemma, 
real-vec-add_wf, 
false_wf, 
le_wf, 
real-vec-mul_wf, 
rsub_wf, 
int-to-real_wf, 
rv-T_wf, 
not_wf, 
rv-pos-angle_wf, 
r2-left_wf, 
real-vec_wf, 
real-vec-sep_wf, 
i-member_wf, 
rccint_wf, 
req-vec_wf, 
equal_wf, 
req_weakening, 
int_seg_wf, 
not-real-vec-sep-iff-eq, 
req-vec_functionality, 
real-vec-add_functionality, 
req-vec_weakening, 
real-vec-mul_functionality, 
radd_wf, 
rmul_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
r2-det_wf, 
dot-product_wf, 
real-vec-sub_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
rminus_wf, 
lelt_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
req_wf, 
req_functionality, 
r2-det-is-dot-product, 
rless_wf, 
rabs_wf, 
real-vec-norm_wf, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
r2-dot-product, 
Cauchy-Schwarz-equality2, 
real-vec-norm-positive-iff, 
decidable__equal_int, 
int_subtype_base, 
int_seg_properties, 
int_seg_subtype, 
int_seg_cases, 
intformand_wf, 
intformless_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
rdiv_wf, 
rmul_preserves_req, 
rinv_wf2, 
req-implies-req, 
itermMinus_wf, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
rmul-rinv3, 
real_term_value_minus_lemma, 
radd-preserves-req, 
radd-zero, 
req_inversion
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
productElimination, 
dependent_pairFormation, 
isectElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
sqequalRule, 
independent_pairFormation, 
because_Cache, 
productEquality, 
voidElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_isectElimination, 
approximateComputation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidEquality, 
setElimination, 
rename, 
unionElimination, 
equalityElimination, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
instantiate, 
cumulativity, 
functionEquality, 
addLevel, 
impliesFunctionality, 
hypothesis_subsumption, 
addEquality, 
inrFormation, 
inlFormation
Latex:
\mforall{}a,b,x,y:\mBbbR{}\^{}2.
    (r2-left(x;a;b)  {}\mRightarrow{}  r2-left(y;b;a)  {}\mRightarrow{}  (\mexists{}z:\mBbbR{}\^{}2.  (rv-T(2;x;z;y)  \mwedge{}  (\mneg{}rv-pos-angle(2;z;a;b)))))
Date html generated:
2017_10_03-AM-11_56_56
Last ObjectModification:
2017_06_09-PM-06_49_10
Theory : reals
Home
Index