Nuprl Lemma : r2-left-right

a,b,x,y:ℝ^2.  (r2-left(x;a;b)  r2-left(y;b;a)  (∃z:ℝ^2. (rv-T(2;x;z;y) ∧ rv-pos-angle(2;z;a;b)))))


Proof




Definitions occuring in Statement :  r2-left: r2-left(p;q;r) rv-T: rv-T(n;a;b;c) rv-pos-angle: rv-pos-angle(n;a;b;c) real-vec: ^n all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q exists: x:A. B[x] and: P ∧ Q uall: [x:A]. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A prop: cand: c∧ B rv-T: rv-T(n;a;b;c) real-vec-be: real-vec-be(n;a;b;c) req-vec: req-vec(n;x;y) real-vec: ^n uimplies: supposing a uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) real-vec-mul: a*X real-vec-add: Y req_int_terms: t1 ≡ t2 top: Top int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  subtype_rel: A ⊆B lelt: i ≤ j < k less_than: a < b squash: T true: True bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b rv-pos-angle: rv-pos-angle(n;a;b;c) nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) eq_int: (i =z j) iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) rneq: x ≠ y rdiv: (x/y)
Lemmas referenced :  r2-left-right-lemma real-vec-add_wf false_wf le_wf real-vec-mul_wf rsub_wf int-to-real_wf rv-T_wf not_wf rv-pos-angle_wf r2-left_wf real-vec_wf real-vec-sep_wf i-member_wf rccint_wf req-vec_wf equal_wf req_weakening int_seg_wf not-real-vec-sep-iff-eq req-vec_functionality real-vec-add_functionality req-vec_weakening real-vec-mul_functionality radd_wf rmul_wf itermSubtract_wf itermAdd_wf itermMultiply_wf itermVar_wf itermConstant_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma r2-det_wf dot-product_wf real-vec-sub_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int rminus_wf lelt_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int req_wf req_functionality r2-det-is-dot-product rless_wf rabs_wf real-vec-norm_wf full-omega-unsat intformnot_wf intformeq_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf r2-dot-product Cauchy-Schwarz-equality2 real-vec-norm-positive-iff decidable__equal_int int_subtype_base int_seg_properties int_seg_subtype int_seg_cases intformand_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma rdiv_wf rmul_preserves_req rinv_wf2 req-implies-req itermMinus_wf req_transitivity rmul_functionality rmul-rinv rmul-rinv3 real_term_value_minus_lemma radd-preserves-req radd-zero req_inversion
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination dependent_pairFormation isectElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation because_Cache productEquality voidElimination equalityTransitivity equalitySymmetry applyEquality independent_isectElimination approximateComputation lambdaEquality int_eqEquality intEquality isect_memberEquality voidEquality setElimination rename unionElimination equalityElimination imageMemberEquality baseClosed promote_hyp instantiate cumulativity functionEquality addLevel impliesFunctionality hypothesis_subsumption addEquality inrFormation inlFormation

Latex:
\mforall{}a,b,x,y:\mBbbR{}\^{}2.
    (r2-left(x;a;b)  {}\mRightarrow{}  r2-left(y;b;a)  {}\mRightarrow{}  (\mexists{}z:\mBbbR{}\^{}2.  (rv-T(2;x;z;y)  \mwedge{}  (\mneg{}rv-pos-angle(2;z;a;b)))))



Date html generated: 2017_10_03-AM-11_56_56
Last ObjectModification: 2017_06_09-PM-06_49_10

Theory : reals


Home Index