Nuprl Lemma : union-metric-space-complete
∀T:Type. ∀eq:EqDecider(T). ∀X:T ⟶ MetricSpace.  ((∀i:T. mcomplete(X i)) ⇒ mcomplete(union-metric-space(T;eq;X)))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M), 
union-metric-space: union-metric-space(T;eq;X), 
metric-space: MetricSpace, 
deq: EqDecider(T), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
union-metric-space: union-metric-space(T;eq;X), 
mcomplete: mcomplete(M), 
mk-metric-space: X with d, 
mcauchy: mcauchy(d;n.x[n]), 
member: t ∈ T, 
nat_plus: ℕ+, 
decidable: Dec(P), 
or: P ∨ Q, 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
top: Top, 
prop: ℙ, 
false: False, 
sq_exists: ∃x:A [B[x]], 
metric-space: MetricSpace, 
pi1: fst(t), 
deq: EqDecider(T), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
eqof: eqof(d), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
bfalse: ff, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
nat: ℕ, 
ge: i ≥ j , 
mdist: mdist(d;x;y), 
metric: metric(X), 
rneq: x ≠ y, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b), 
true: True, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
le: A ≤ B, 
rdiv: (x/y), 
req_int_terms: t1 ≡ t2, 
rev_uimplies: rev_uimplies(P;Q), 
label: ...$L... t, 
rless: x < y, 
cand: A c∧ B, 
mconverges: x[n]↓ as n→∞, 
mconverges-to: lim n→∞.x[n] = y
Lemmas referenced : 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
mcauchy_wf, 
eqtt_to_assert, 
safe-assert-deq, 
rmin_wf, 
mdist_wf, 
subtype_rel-equal, 
metric_wf, 
int-to-real_wf, 
istype-universe, 
istype-nat, 
mcomplete_wf, 
metric-space_wf, 
deq_wf, 
nat_properties, 
decidable__le, 
intformand_wf, 
intformle_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
istype-le, 
rleq_wf, 
rdiv_wf, 
rless-int, 
rless_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
equal_wf, 
rmul_preserves_rleq2, 
rleq-int, 
istype-false, 
rmul_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
rinv_wf2, 
rleq_functionality, 
req_transitivity, 
rmul-int, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
nat_plus_properties, 
imax_wf, 
subtract_wf, 
imax_ub, 
nat_plus_wf, 
ifthenelse_wf, 
le_int_wf, 
assert_of_le_int, 
int_term_value_subtract_lemma, 
le_wf, 
le_functionality, 
le_weakening, 
add_functionality_wrt_le, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
imax_unfold, 
subtype_rel_self, 
iff_weakening_equal, 
pi1_wf_top, 
istype-top, 
subtype_rel_product, 
top_wf, 
real_wf, 
rless-cases, 
rless-int-fractions, 
int_term_value_mul_lemma, 
rleq_weakening_rless, 
rmin_strict_ub, 
rless-int-fractions3, 
rless_transitivity1, 
rless_irreflexivity, 
trivial-int-eq1, 
rmin_lb, 
rneq-int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
less_than_wf, 
int_subtype_base, 
mconverges-to_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalRule, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
introduction, 
extract_by_obid, 
unionElimination, 
isectElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
hypothesisEquality, 
setElimination, 
rename, 
productEquality, 
applyEquality, 
inhabitedIsType, 
productElimination, 
equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
because_Cache, 
independent_pairFormation, 
productIsType, 
applyLambdaEquality, 
closedConclusion, 
functionIsType, 
instantiate, 
universeEquality, 
addEquality, 
int_eqEquality, 
inrFormation_alt, 
imageMemberEquality, 
baseClosed, 
promote_hyp, 
cumulativity, 
hyp_replacement, 
dependent_set_memberFormation_alt, 
inlFormation_alt, 
intEquality, 
imageElimination, 
multiplyEquality, 
dependent_pairEquality_alt, 
sqequalBase, 
spreadEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}X:T  {}\mrightarrow{}  MetricSpace.
    ((\mforall{}i:T.  mcomplete(X  i))  {}\mRightarrow{}  mcomplete(union-metric-space(T;eq;X)))
 Date html generated: 
2019_10_30-AM-06_46_35
 Last ObjectModification: 
2019_10_02-AM-10_58_02
Theory : reals
Home
Index