Nuprl Lemma : equipollent-filter

[A:Type]. ∀P:A ⟶ 𝔹. ∀L:A List.  {x:ℕ||L||| ↑P[L[x]]}  ~ ℕ||filter(P;L)||


Proof




Definitions occuring in Statement :  equipollent: B select: L[n] length: ||as|| filter: filter(P;l) list: List int_seg: {i..j-} assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: less_than: a < b squash: T subtype_rel: A ⊆B select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff nat: le: A ≤ B less_than': less_than'(a;b) sq_stable: SqStable(P) ext-eq: A ≡ B rev_uimplies: rev_uimplies(P;Q) ge: i ≥  sq_type: SQType(T) true: True
Lemmas referenced :  last_induction equipollent_wf int_seg_wf length_wf assert_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf list_wf length_of_nil_lemma stuck-spread base_wf filter_nil_lemma equipollent-zero filter_append cons_wf nil_wf length-append length_of_cons_lemma filter_cons_lemma equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf equipollent-add length_wf_nat false_wf le_wf append_wf add-is-int-iff itermAdd_wf int_term_value_add_lemma equipollent_functionality_wrt_equipollent2 equipollent_inversion union_functionality_wrt_equipollent equipollent_weakening_ext-eq ext-eq_weakening equipollent-split sq_stable_from_decidable decidable__assert less_than_wf decidable__squash equipollent_functionality_wrt_equipollent lelt_wf assert_functionality_wrt_uiff select_append_front subtype_rel_sets subtype_rel_set int_seg_subtype equal-wf-base-T int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma non_neg_length subtract_wf itermSubtract_wf int_term_value_subtract_lemma length-singleton select_append_back select-cons-hd ext-eq_wf equipollent_transitivity equipollent-one add-zero add-commutes subtype_base_sq set_subtype_base squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality setEquality natural_numberEquality cumulativity hypothesis applyEquality functionExtensionality because_Cache setElimination rename independent_isectElimination productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination baseClosed functionEquality universeEquality equalityTransitivity equalitySymmetry equalityElimination dependent_set_memberEquality addEquality pointwiseFunctionality promote_hyp baseApply closedConclusion unionEquality imageMemberEquality instantiate addLevel hyp_replacement levelHypothesis

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    \{x:\mBbbN{}||L|||  \muparrow{}P[L[x]]\}    \msim{}  \mBbbN{}||filter(P;L)||



Date html generated: 2017_04_17-AM-09_35_10
Last ObjectModification: 2017_02_27-PM-05_35_25

Theory : equipollence!!cardinality!


Home Index