Nuprl Lemma : equipollent-filter
∀[A:Type]. ∀P:A ⟶ 𝔹. ∀L:A List.  {x:ℕ||L||| ↑P[L[x]]}  ~ ℕ||filter(P;L)||
Proof
Definitions occuring in Statement : 
equipollent: A ~ B
, 
select: L[n]
, 
length: ||as||
, 
filter: filter(P;l)
, 
list: T List
, 
int_seg: {i..j-}
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
select: L[n]
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
sq_stable: SqStable(P)
, 
ext-eq: A ≡ B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
sq_type: SQType(T)
, 
true: True
Lemmas referenced : 
last_induction, 
equipollent_wf, 
int_seg_wf, 
length_wf, 
assert_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
filter_wf5, 
subtype_rel_dep_function, 
bool_wf, 
l_member_wf, 
subtype_rel_self, 
set_wf, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
filter_nil_lemma, 
equipollent-zero, 
filter_append, 
cons_wf, 
nil_wf, 
length-append, 
length_of_cons_lemma, 
filter_cons_lemma, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf, 
equipollent-add, 
length_wf_nat, 
false_wf, 
le_wf, 
append_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
equipollent_functionality_wrt_equipollent2, 
equipollent_inversion, 
union_functionality_wrt_equipollent, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
equipollent-split, 
sq_stable_from_decidable, 
decidable__assert, 
less_than_wf, 
decidable__squash, 
equipollent_functionality_wrt_equipollent, 
lelt_wf, 
assert_functionality_wrt_uiff, 
select_append_front, 
subtype_rel_sets, 
subtype_rel_set, 
int_seg_subtype, 
equal-wf-base-T, 
int_subtype_base, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
non_neg_length, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
length-singleton, 
select_append_back, 
select-cons-hd, 
ext-eq_wf, 
equipollent_transitivity, 
equipollent-one, 
add-zero, 
add-commutes, 
subtype_base_sq, 
set_subtype_base, 
squash_wf, 
true_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
setEquality, 
natural_numberEquality, 
cumulativity, 
hypothesis, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
baseClosed, 
functionEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
dependent_set_memberEquality, 
addEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
unionEquality, 
imageMemberEquality, 
instantiate, 
addLevel, 
hyp_replacement, 
levelHypothesis
Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbB{}.  \mforall{}L:A  List.    \{x:\mBbbN{}||L|||  \muparrow{}P[L[x]]\}    \msim{}  \mBbbN{}||filter(P;L)||
Date html generated:
2017_04_17-AM-09_35_10
Last ObjectModification:
2017_02_27-PM-05_35_25
Theory : equipollence!!cardinality!
Home
Index