Nuprl Lemma : exp-ratio-property

a:ℕ. ∀b:{a 1...}. ∀k:ℕ.  (exp-ratio(a;b;0;k;1) ∈ {n:ℕa^n < b^n} )


Proof




Definitions occuring in Statement :  exp-ratio: exp-ratio(a;b;n;p;q) exp: i^n int_upper: {i...} nat: less_than: a < b all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  multiply: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] nat: nat_plus: + implies:  Q guard: {T} int_upper: {i...} ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] subtract: m le: A ≤ B less_than': less_than'(a;b) true: True squash: T iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) cand: c∧ B sq_type: SQType(T) less_than: a < b rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  int_upper_wf nat_wf nat_plus_properties le_wf exp_wf2 nat_properties int_upper_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma primrec-wf-nat-plus nat_plus_subtype_nat nat_plus_wf exp0_lemma istype-false itermAdd_wf int_term_value_add_lemma squash_wf true_wf add_functionality_wrt_eq exp1 subtype_rel_self iff_weakening_equal add-subtract-cancel exp_add mul_preserves_le upper_subtype_nat not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel add_nat_wf exp_wf4 multiply_nat_wf add-is-int-iff multiply-is-int-iff itermMultiply_wf intformeq_wf int_term_value_mul_lemma int_formula_prop_eq_lemma false_wf mul-distributes-right mul-distributes mul-associates mul-commutes mul-swap one-mul exp_step int_subtype_base set_subtype_base istype-less_than mul_bounds_1a decidable__equal_int subtype_base_sq less_than_wf exp-zero zero-mul exp-positive decidable__lt not-lt-2 mul_nat_plus not-equal-2 minus-zero subtract_nat_wf less_than_functionality le_weakening subtract-add-cancel equal_wf istype-universe exp_wf_nat_plus mul_bounds_1b exp-ratio_wf mul-one
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut sqequalHypSubstitution hypothesis Error :inhabitedIsType,  hypothesisEquality Error :universeIsType,  introduction extract_by_obid isectElimination thin addEquality setElimination rename natural_numberEquality Error :dependent_set_memberEquality_alt,  dependent_functionElimination unionElimination independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination sqequalRule independent_pairFormation multiplyEquality because_Cache applyEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate universeEquality productElimination closedConclusion minusEquality applyLambdaEquality pointwiseFunctionality promote_hyp baseApply Error :equalityIsType1,  intEquality cumulativity

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}b:\{a  +  1...\}.  \mforall{}k:\mBbbN{}.    (exp-ratio(a;b;0;k;1)  \mmember{}  \{n:\mBbbN{}|  k  *  a\^{}n  <  b\^{}n\}  )



Date html generated: 2019_06_20-PM-02_30_44
Last ObjectModification: 2019_01_27-PM-06_37_12

Theory : num_thy_1


Home Index