Nuprl Lemma : le-tuple-sum

[P:Type]. ∀[as:P List]. ∀[G:P ⟶ Type]. ∀[x:tuple-type(map(G;as))]. ∀[f:i:P ⟶ (G i) ⟶ ℕ].
  ∀k:ℕ||as||. ((f as[k] x.k) ≤ tuple-sum(f;as;x))


Proof




Definitions occuring in Statement :  select-tuple: x.n tuple-sum: tuple-sum(f;L;x) tuple-type: tuple-type(L) select: L[n] length: ||as|| map: map(f;as) list: List int_seg: {i..j-} nat: uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: le: A ≤ B or: P ∨ Q tuple-sum: tuple-sum(f;L;x) select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} lelt: i ≤ j < k cons: [a b] less_than': less_than'(a;b) colength: colength(L) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T decidable: Dec(P) subtype_rel: A ⊆B bfalse: ff bool: 𝔹 unit: Unit subtract: m eq_int: (i =z j) select-tuple: x.n top: Top iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) sq_stable: SqStable(P) true: True pi1: fst(t) pi2: snd(t) bnot: ¬bb assert: b nequal: a ≠ b ∈  cand: c∧ B
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than le_witness_for_triv list-cases map_nil_lemma length_of_nil_lemma stuck-spread istype-base null_nil_lemma tupletype_nil_lemma int_seg_properties int_seg_wf unit_wf2 product_subtype_list colength-cons-not-zero colength_wf_list istype-void istype-le subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf map_cons_lemma length_of_cons_lemma null_cons_lemma tupletype_cons_lemma null-map null_wf length_wf tuple-type_wf map_wf istype-nat list_wf istype-universe btrue_neq_bfalse int_seg_cases int_seg_subtype_special bool_wf bool_subtype_base bfalse_wf length_wf_nat istype-false not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 eq_int_wf eqtt_to_assert assert_of_eq_int non_neg_length eqff_to_assert bool_cases_sqequal assert-bnot neg_assert_of_eq_int tuple-sum_wf select-cons le_int_wf assert_of_le_int iff_weakening_uiff assert_wf decidable__lt add-subtract-cancel select_wf select-tuple_wf map-length map_length subtype_rel-equal map_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin lambdaFormation_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination isect_memberEquality_alt productElimination equalityTransitivity equalitySymmetry functionIsTypeImplies inhabitedIsType isectIsTypeImplies unionElimination baseClosed functionIsType applyEquality because_Cache promote_hyp hypothesis_subsumption equalityIstype dependent_set_memberEquality_alt instantiate applyLambdaEquality imageElimination baseApply closedConclusion intEquality sqequalBase equalityElimination addEquality productIsType cumulativity universeEquality imageMemberEquality minusEquality

Latex:
\mforall{}[P:Type].  \mforall{}[as:P  List].  \mforall{}[G:P  {}\mrightarrow{}  Type].  \mforall{}[x:tuple-type(map(G;as))].  \mforall{}[f:i:P  {}\mrightarrow{}  (G  i)  {}\mrightarrow{}  \mBbbN{}].
    \mforall{}k:\mBbbN{}||as||.  ((f  as[k]  x.k)  \mleq{}  tuple-sum(f;as;x))



Date html generated: 2020_05_19-PM-10_00_19
Last ObjectModification: 2020_01_01-AM-10_58_21

Theory : tuples


Home Index