Nuprl Lemma : bag-intersection
∀[A:Type]. ∀[as,as',bs,bs':bag(A)].
  (↓∃x:A. (x ↓∈ as ∧ x ↓∈ bs)) supposing (#(as') < #(as) and #(bs') < #(bs) and ((as + as') = (bs + bs') ∈ bag(A)))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-size: #(bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
bag-size: #(bs)
, 
bag-append: as + bs
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
permutation: permutation(T;L1;L2)
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
less_than: a < b
, 
guard: {T}
, 
sq_type: SQType(T)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
inject: Inj(A;B;f)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
equipollent: A ~ B
, 
biject: Bij(A;B;f)
, 
less_than': less_than'(a;b)
Lemmas referenced : 
bag_to_squash_list, 
less_than_wf, 
bag-size_wf, 
equal_wf, 
bag_wf, 
bag-append_wf, 
list-subtype-bag, 
nat_wf, 
permutation-length, 
decidable__exists_int_seg, 
length_wf, 
int_seg_wf, 
length-append, 
non_neg_length, 
length_append, 
subtype_rel_list, 
top_wf, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermVar_wf, 
itermAdd_wf, 
intformle_wf, 
itermConstant_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
lelt_wf, 
member_wf, 
list_wf, 
append_wf, 
permutation_wf, 
squash_wf, 
exists_wf, 
bag-member_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
list-member-bag-member, 
bag-member-select, 
subtype_base_sq, 
int_subtype_base, 
length_wf_nat, 
permute_list_select, 
nat_properties, 
iff_weakening_equal, 
select_member, 
l_member_wf, 
true_wf, 
select_append_front, 
not_over_exists, 
all_wf, 
le_wf, 
inject_wf, 
decidable__equal_int, 
le_weakening2, 
injection_le, 
ifthenelse_wf, 
lt_int_wf, 
subtract_wf, 
equipollent_functionality_wrt_equipollent, 
equipollent-int_seg, 
equipollent_weakening_ext-eq, 
ext-eq_weakening, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
compose_wf, 
injection-composition, 
int_seg_subtype, 
false_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
cumulativity, 
applyEquality, 
because_Cache, 
sqequalRule, 
equalityTransitivity, 
rename, 
independent_isectElimination, 
lambdaEquality, 
setElimination, 
pertypeElimination, 
instantiate, 
dependent_functionElimination, 
natural_numberEquality, 
functionExtensionality, 
dependent_set_memberEquality, 
independent_pairFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_functionElimination, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
productEquality, 
universeEquality, 
addEquality, 
functionEquality, 
equalityElimination
Latex:
\mforall{}[A:Type].  \mforall{}[as,as',bs,bs':bag(A)].
    (\mdownarrow{}\mexists{}x:A.  (x  \mdownarrow{}\mmember{}  as  \mwedge{}  x  \mdownarrow{}\mmember{}  bs))  supposing 
          (\#(as')  <  \#(as)  and 
          \#(bs')  <  \#(bs)  and 
          ((as  +  as')  =  (bs  +  bs')))
Date html generated:
2017_10_01-AM-08_59_39
Last ObjectModification:
2017_07_26-PM-04_41_42
Theory : bags
Home
Index