Nuprl Lemma : fpf-vals-singleton
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ⟶ Type]. ∀[P:A ⟶ 𝔹]. ∀[f:x:A fp-> B[x]]. ∀[a:A].
  (fpf-vals(eq;P;f) = [<a, f(a)>] ∈ ((x:A × B[x]) List)) supposing ((∀b:A. (↑(P b) ⇐⇒ b = a ∈ A)) and (↑a ∈ dom(f)))
Proof
Definitions occuring in Statement : 
fpf-vals: fpf-vals(eq;P;f), 
fpf-ap: f(x), 
fpf-dom: x ∈ dom(f), 
fpf: a:A fp-> B[a], 
cons: [a / b], 
nil: [], 
list: T List, 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
function: x:A ⟶ B[x], 
pair: <a, b>, 
product: x:A × B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
fpf-vals: fpf-vals(eq;P;f), 
let: let, 
fpf: a:A fp-> B[a], 
pi1: fst(t), 
pi2: snd(t), 
all: ∀x:A. B[x], 
member: t ∈ T, 
top: Top, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
prop: ℙ, 
and: P ∧ Q, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
fpf-dom: x ∈ dom(f), 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
nat: ℕ, 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
cons: [a / b], 
colength: colength(L), 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
decidable: Dec(P), 
nil: [], 
less_than: a < b, 
squash: ↓T, 
less_than': less_than'(a;b)
Lemmas referenced : 
fpf_ap_pair_lemma, 
all_wf, 
iff_wf, 
assert_wf, 
equal_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
fpf_wf, 
bool_wf, 
deq_wf, 
remove-repeats_property, 
assert-deq-member, 
deq-member_wf, 
equal-wf-T-base, 
l_member_wf, 
bnot_wf, 
not_wf, 
cons_wf, 
nil_wf, 
iff_transitivity, 
iff_weakening_uiff, 
eqtt_to_assert, 
eqff_to_assert, 
assert_of_bnot, 
list_wf, 
nil_member, 
false_wf, 
filter_nil_lemma, 
no_repeats_wf, 
cons_member, 
filter_cons_lemma, 
no_repeats_cons, 
uiff_transitivity, 
or_wf, 
list_induction, 
filter_wf5, 
subtype_rel_dep_function, 
subtype_rel_self, 
set_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
and_wf, 
remove-repeats_wf, 
bool_cases, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
nat_wf, 
colength_wf_list, 
less_than_transitivity1, 
less_than_irreflexivity, 
list-cases, 
equal-wf-base-T, 
product_subtype_list, 
spread_cons_lemma, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
le_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
set_subtype_base, 
int_subtype_base, 
decidable__equal_int, 
reduce_hd_cons_lemma, 
hd_wf, 
squash_wf, 
length_wf, 
length_cons_ge_one, 
subtype_rel_list, 
null_nil_lemma, 
btrue_wf, 
reduce_tl_cons_lemma, 
tl_wf, 
null_wf3, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
map_cons_lemma, 
map_nil_lemma, 
zip_cons_cons_lemma, 
zip_nil_lemma, 
member-remove-repeats
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
because_Cache, 
independent_isectElimination, 
lambdaFormation, 
functionEquality, 
universeEquality, 
isect_memberFormation, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
independent_pairFormation, 
hyp_replacement, 
applyLambdaEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
impliesFunctionality, 
promote_hyp, 
setEquality, 
setElimination, 
rename, 
dependent_pairFormation, 
instantiate, 
dependent_set_memberEquality, 
inrFormation, 
inlFormation, 
intWeakElimination, 
natural_numberEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
hypothesis_subsumption, 
addEquality, 
imageElimination, 
imageMemberEquality, 
productEquality, 
dependent_pairEquality
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[a:A].
    (fpf-vals(eq;P;f)  =  [<a,  f(a)>])  supposing  ((\mforall{}b:A.  (\muparrow{}(P  b)  \mLeftarrow{}{}\mRightarrow{}  b  =  a))  and  (\muparrow{}a  \mmember{}  dom(f)))
Date html generated:
2018_05_21-PM-09_26_08
Last ObjectModification:
2018_02_09-AM-10_21_37
Theory : finite!partial!functions
Home
Index