Nuprl Lemma : cnv-taba-property

[A,B:Type].
  ∀xs:A List. ∀ys:B List.  ((||xs|| ≤ ||ys||)  (cnv-taba(xs;ys) zip(xs;rev(firstn(||xs||;ys))) ∈ ((A × B) List)))


Proof




Definitions occuring in Statement :  cnv-taba: cnv-taba(xs;ys) zip: zip(as;bs) firstn: firstn(n;as) length: ||as|| reverse: rev(as) list: List uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q cnv-taba: cnv-taba(xs;ys) nat: false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q prop: or: P ∨ Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb ifthenelse: if then else fi  bfalse: ff btrue: tt cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B uiff: uiff(P;Q) bool: 𝔹 unit: Unit firstn: firstn(n;as) int_seg: {i..j-} lelt: i ≤ j < k append: as bs true: True int_iseg: {i...j} cand: c∧ B assert: b rev_implies:  Q iff: ⇐⇒ Q tl: tl(l) pi2: snd(t) subtract: m reverse: rev(as) rev-append: rev(as) bs list_accum: list_accum pi1: fst(t)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list-cases length_of_nil_lemma list_ind_nil_lemma zip_nil_lemma product_subtype_list colength-cons-not-zero colength_wf_list istype-false le_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le length_of_cons_lemma list_ind_cons_lemma nat_wf list_wf length_wf nil_wf add-is-int-iff false_wf le_int_wf uiff_transitivity equal-wf-T-base bool_wf assert_wf eqtt_to_assert assert_of_le_int non_neg_length lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int bnot_of_lt_int add-subtract-cancel append_firstn_lastn_sq subtype_rel_list top_wf istype-universe decidable__lt nth_tl_wf firstn_wf reverse_nil_lemma reverse-cons reduce_tl_cons_lemma zip_cons_nil_lemma reduce_tl_nil_lemma first0 zip_cons_cons_lemma cons_wf length_firstn length_wf_nat bool_cases_sqequal bool_subtype_base assert-bnot iff_weakening_uiff firstn-append nth_tl-append length_nth_tl reverse-append zip_wf append_wf reverse_wf pi1_wf_top equal_wf squash_wf true_wf length_of_null_list subtype_rel_self iff_weakening_equal spread_wf subtype_rel-equal list_ind_wf tl_wf subtype_rel_product and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution lambdaEquality_alt dependent_functionElimination thin hypothesisEquality axiomEquality hypothesis functionIsTypeImplies inhabitedIsType isect_memberEquality_alt isectElimination universeIsType universeEquality lambdaFormation_alt extract_by_obid setElimination rename intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality voidElimination independent_pairFormation unionElimination promote_hyp hypothesis_subsumption productElimination equalityIsType1 because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality imageElimination equalityIsType4 baseApply closedConclusion baseClosed applyEquality intEquality cumulativity productEquality independent_pairEquality lambdaFormation pointwiseFunctionality addEquality equalityElimination hyp_replacement productIsType imageMemberEquality voidEquality isect_memberEquality lambdaEquality dependent_set_memberEquality

Latex:
\mforall{}[A,B:Type].
    \mforall{}xs:A  List.  \mforall{}ys:B  List.    ((||xs||  \mleq{}  ||ys||)  {}\mRightarrow{}  (cnv-taba(xs;ys)  =  zip(xs;rev(firstn(||xs||;ys)))))



Date html generated: 2019_10_15-AM-11_34_58
Last ObjectModification: 2018_10_10-PM-01_59_05

Theory : general


Home Index