Nuprl Lemma : FOL-abstract-rename
∀[Dom:Type]. ∀[S:FOStruct+{i:l}(Dom)].
  ∀x,y:ℤ. ∀fmla:mFOL().
    ((¬(x ∈ mFOL-boundvars(fmla)))
    ⇒ (∀a1:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom). ∀a2:FOAssignment(mFOL-freevars(fmla),Dom).
          ((a2 = FOAssigment-rename(a1;fmla;x;y) ∈ FOAssignment(mFOL-freevars(fmla),Dom))
          ⇒ (Dom,S,a2 +|= FOL-abstract(fmla) = Dom,S,a1 +|= FOL-abstract(mFOL-rename(fmla;y;x)) ∈ ℙ))))
Proof
Definitions occuring in Statement : 
FOL-abstract: FOL-abstract(fmla), 
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y), 
mFOL-rename: mFOL-rename(fmla;old;new), 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL-freevars: mFOL-freevars(fmla), 
mFOL: mFOL(), 
FOSatWith+: Dom,S,a +|= fmla, 
FOStruct+: FOStruct+{i:l}(Dom), 
FOAssignment: FOAssignment(vs,Dom), 
l_member: (x ∈ l), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
int: ℤ, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
so_lambda: λ2x.t[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
prop: ℙ, 
uimplies: b supposing a, 
so_apply: x[s], 
not: ¬A, 
mFOL-boundvars: mFOL-boundvars(fmla), 
mFOL_ind: mFOL_ind, 
mFOatomic: name(vars), 
nil: [], 
it: ⋅, 
false: False, 
guard: {T}, 
mFOL-rename: mFOL-rename(fmla;old;new), 
FOL-abstract: FOL-abstract(fmla), 
AbstractFOAtomic+: AbstractFOAtomic+(n;L), 
FOSatWith+: Dom,S,a +|= fmla, 
squash: ↓T, 
FOStruct+: FOStruct+{i:l}(Dom), 
FOStruct: FOStruct(Dom), 
top: Top, 
compose: f o g, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
bnot: ¬bb, 
assert: ↑b, 
subtype_rel: A ⊆r B, 
true: True, 
FOAssigment-rename: FOAssigment-rename(a;fmla;x;y), 
mFOL-freevars: mFOL-freevars(fmla), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
update-assignment: a[x := v], 
FOAssignment: FOAssignment(vs,Dom), 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
mFOconnect: mFOconnect(knd;left;right), 
FOConnective+: FOConnective+(knd), 
let: let, 
cand: A c∧ B, 
mFOquant: mFOquant(isall;var;body), 
FOQuantifier+: FOQuantifier+(isall), 
filter: filter(P;l), 
reduce: reduce(f;k;as), 
list_ind: list_ind
Lemmas referenced : 
mFOL-induction, 
not_wf, 
l_member_wf, 
mFOL-boundvars_wf, 
all_wf, 
FOAssignment_wf, 
mFOL-freevars_wf, 
mFOL-rename_wf, 
equal_wf, 
FOAssigment-rename_wf, 
FOSatWith+_wf, 
FOL-abstract_wf, 
mFOL_wf, 
mFOatomic_wf, 
nil_wf, 
istype-void, 
list_wf, 
istype-atom, 
mFOconnect_wf, 
mFOquant_wf, 
bool_wf, 
istype-int, 
FOStruct+_wf, 
istype-universe, 
b-union_wf, 
squash_wf, 
true_wf, 
map-map, 
list-subtype, 
map_wf, 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
subtype_rel_self, 
deq-member_wf, 
int-deq_wf, 
remove-repeats_wf, 
assert_wf, 
bnot_wf, 
istype-assert, 
bool_cases, 
assert-deq-member, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
subtype_rel_sets_simple, 
member-remove-repeats, 
equal-wf-base, 
eq_int_eq_true, 
btrue_wf, 
iff_weakening_equal, 
int_subtype_base, 
set_subtype_base, 
bfalse_wf, 
assert_elim, 
btrue_neq_bfalse, 
strong-subtype-l_member, 
strong-subtype-self, 
remove-repeats_property, 
decidable__equal_int, 
full-omega-unsat, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
eq_int_eq_false, 
member-union, 
val-union-l-union, 
int-valueall-type, 
ifthenelse_wf, 
eq_atom_wf, 
subtype_rel_FOAssignment, 
union-contains, 
equal_functionality_wrt_subtype_rel2, 
union-contains2, 
AbstractFOFormula+_wf, 
trivial-mFOL-rename, 
member-insert, 
update-assignment_wf, 
member_filter, 
filter_wf5, 
intformand_wf, 
int_formula_prop_and_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality_alt, 
functionEquality, 
closedConclusion, 
intEquality, 
hypothesisEquality, 
because_Cache, 
cumulativity, 
independent_isectElimination, 
universeEquality, 
universeIsType, 
independent_functionElimination, 
equalityIstype, 
inhabitedIsType, 
functionIsType, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
setElimination, 
rename, 
isect_memberEquality_alt, 
voidElimination, 
setEquality, 
functionExtensionality, 
unionElimination, 
equalityElimination, 
productElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
tokenEquality, 
natural_numberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
productIsType, 
baseApply, 
sqequalBase, 
approximateComputation, 
int_eqEquality, 
inlFormation_alt, 
inrFormation_alt, 
productEquality, 
unionEquality, 
setIsType
Latex:
\mforall{}[Dom:Type].  \mforall{}[S:FOStruct+\{i:l\}(Dom)].
    \mforall{}x,y:\mBbbZ{}.  \mforall{}fmla:mFOL().
        ((\mneg{}(x  \mmember{}  mFOL-boundvars(fmla)))
        {}\mRightarrow{}  (\mforall{}a1:FOAssignment(mFOL-freevars(mFOL-rename(fmla;y;x)),Dom).
                \mforall{}a2:FOAssignment(mFOL-freevars(fmla),Dom).
                    ((a2  =  FOAssigment-rename(a1;fmla;x;y))
                    {}\mRightarrow{}  (Dom,S,a2  +|=  FOL-abstract(fmla)  =  Dom,S,a1  +|=  FOL-abstract(mFOL-rename(fmla;y;x))))))
Date html generated:
2019_10_16-AM-11_40_06
Last ObjectModification:
2018_12_01-PM-05_07_41
Theory : minimal-first-order-logic
Home
Index