Nuprl Lemma : face-of-face-pairity

k:ℕ. ∀a,b,c:ℚCube(k).
  (1 < dim(c)
   immediate-rc-face(k;a;b)
   immediate-rc-face(k;b;c)
   (∃!b':ℚCube(k). (immediate-rc-face(k;a;b') ∧ immediate-rc-face(k;b';c) ∧ (b' b ∈ ℚCube(k))))))


Proof




Definitions occuring in Statement :  immediate-rc-face: immediate-rc-face(k;f;c) rat-cube-dimension: dim(c) rational-cube: Cube(k) nat: less_than: a < b exists!: !x:T. P[x] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T immediate-rc-face: immediate-rc-face(k;f;c) and: P ∧ Q uall: [x:A]. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False prop: int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B subtype_rel: A ⊆B rat-cube-dimension: dim(c) sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff less_than': less_than'(a;b) rational-cube: Cube(k) rev_uimplies: rev_uimplies(P;Q) bool: 𝔹 unit: Unit it: bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] true: True rat-interval-dimension: dim(I) rat-point-interval: [a] rational-interval: Interval pi1: fst(t) iff: ⇐⇒ Q rev_implies:  Q pi2: snd(t) nequal: a ≠ b ∈  subtract: m exists!: !x:T. P[x] cand: c∧ B rat-cube-face: c ≤ d label: ...$L... t top: Top rat-interval-face: I ≤ J
Lemmas referenced :  immediate-rc-face-implies nat_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf itermSubtract_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_subtract_lemma int_formula_prop_wf rat-cube-dimension_wf int_seg_properties decidable__le intformle_wf int_formula_prop_le_lemma istype-le decidable__equal_int inhabited-rat-cube_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert eqff_to_assert assert_of_bnot immediate-rc-face_wf istype-less_than rational-cube_wf istype-nat ifthenelse_wf eq_int_wf rational-interval_wf assert-inhabited-rat-cube assert_of_eq_int bool_cases_sqequal assert-bnot neg_assert_of_eq_int int_subtype_base set_subtype_base lelt_wf q_less_wf assert-q_less-eq iff_weakening_equal qless_irreflexivity qless_wf equal_wf squash_wf true_wf istype-universe rat-interval-dimension_wf int_seg_wf subtype_rel_self isolate_summand2 int_seg_subtype_nat istype-false sum_wf subtract_wf add_functionality_wrt_eq add-associates zero-add add-commutes add-swap istype-void rat-interval-face_wf rat-interval-face-self rat-point-interval_wf pi1_wf_top rationals_wf subtype_rel_product top_wf equal-wf-T-base assert_wf bnot_wf not_wf istype-assert uiff_transitivity2 iff_transitivity iff_weakening_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination productElimination isectElimination hypothesis setElimination rename natural_numberEquality equalityTransitivity equalitySymmetry unionElimination imageElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality Error :memTop,  sqequalRule independent_pairFormation universeIsType voidElimination because_Cache dependent_set_memberEquality_alt applyEquality inhabitedIsType instantiate cumulativity minusEquality equalityElimination equalityIstype promote_hyp intEquality sqequalBase universeEquality imageMemberEquality baseClosed addEquality functionIsType productIsType isect_memberEquality_alt inlFormation_alt unionIsType inrFormation_alt applyLambdaEquality functionExtensionality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c:\mBbbQ{}Cube(k).
    (1  <  dim(c)
    {}\mRightarrow{}  immediate-rc-face(k;a;b)
    {}\mRightarrow{}  immediate-rc-face(k;b;c)
    {}\mRightarrow{}  (\mexists{}!b':\mBbbQ{}Cube(k).  (immediate-rc-face(k;a;b')  \mwedge{}  immediate-rc-face(k;b';c)  \mwedge{}  (\mneg{}(b'  =  b)))))



Date html generated: 2020_05_20-AM-09_23_01
Last ObjectModification: 2020_01_04-PM-10_19_09

Theory : rationals


Home Index