Nuprl Lemma : extended-face-map
∀I:Cname List. ∀x1,x2:nameset(I). ∀i:ℕ2. ∀y1,y2:Cname.
  (x2:=i)[y1:=y2] = ((x2:=i) o rename-one-name(y1;y2)) ∈ name-morph([y1 / I-[x1]];[y2 / I-[x1; x2]]) 
  supposing (¬(y2 ∈ I-[x1; x2])) ∧ (¬(y1 ∈ I))
Proof
Definitions occuring in Statement : 
rename-one-name: rename-one-name(z1;z2), 
name-comp: (f o g), 
face-map: (x:=i), 
extend-name-morph: f[z1:=z2], 
name-morph: name-morph(I;J), 
nameset: nameset(L), 
cname_deq: CnameDeq, 
coordinate_name: Cname, 
list-diff: as-bs, 
l_member: (x ∈ l), 
cons: [a / b], 
nil: [], 
list: T List, 
int_seg: {i..j-}, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
not: ¬A, 
and: P ∧ Q, 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uimplies: b supposing a, 
and: P ∧ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nameset: nameset(L), 
not: ¬A, 
implies: P ⇒ Q, 
prop: ℙ, 
false: False, 
true: True, 
subtype_rel: A ⊆r B, 
squash: ↓T, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
name-morph: name-morph(I;J), 
cand: A c∧ B, 
coordinate_name: Cname, 
int_upper: {i...}, 
so_lambda: λ2x.t[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
less_than: a < b, 
so_apply: x[s], 
sq_type: SQType(T), 
or: P ∨ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
bnot: ¬bb, 
assert: ↑b, 
rename-one-name: rename-one-name(z1;z2), 
face-map: (x:=i), 
name-comp: (f o g), 
extend-name-morph: f[z1:=z2], 
compose: f o g, 
uext: uext(g), 
isname: isname(z), 
le: A ≤ B, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
l_member: (x ∈ l), 
nat: ℕ, 
less_than': less_than'(a;b), 
top: Top, 
select: L[n], 
cons: [a / b], 
nat_plus: ℕ+, 
nequal: a ≠ b ∈ T , 
decidable: Dec(P), 
sq_stable: SqStable(P), 
ge: i ≥ j 
Lemmas referenced : 
name-morphs-equal, 
cons_wf, 
coordinate_name_wf, 
list-diff_wf, 
cname_deq_wf, 
nil_wf, 
extend-name-morph_wf, 
l_member_wf, 
istype-void, 
int_seg_wf, 
nameset_wf, 
list_wf, 
face-map_wf2, 
name-morph_wf, 
subtype_rel_wf, 
squash_wf, 
true_wf, 
istype-universe, 
list-diff2, 
iff_weakening_equal, 
subtype_rel_self, 
name-comp_wf, 
rename-one-name_wf, 
member-list-diff, 
subtype_base_sq, 
list_subtype_base, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
equal_wf, 
list-diff-cons-single, 
cons_member, 
member_singleton, 
list-diff-cons, 
deq-member_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
eq_int_wf, 
assert_of_eq_int, 
neg_assert_of_eq_int, 
iff_imp_equal_bool, 
le_int_wf, 
bfalse_wf, 
iff_functionality_wrt_iff, 
assert_wf, 
false_wf, 
iff_weakening_uiff, 
assert_of_le_int, 
int_seg_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
istype-le, 
eq-cname_wf, 
assert-eq-cname, 
equal-wf-T-base, 
nsub2_subtype_extd-nameset, 
isname-nameset, 
nameset_subtype_extd-nameset, 
length_of_cons_lemma, 
add_nat_plus, 
length_wf_nat, 
decidable__lt, 
intformnot_wf, 
int_formula_prop_not_lemma, 
istype-less_than, 
nat_plus_properties, 
add-is-int-iff, 
itermAdd_wf, 
intformeq_wf, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
length_wf, 
select_wf, 
nat_properties, 
sq_stable__le, 
sq_stable__l_member, 
decidable__equal-coordinate_name, 
decidable__le, 
nameset_subtype, 
l_subset_right_cons_trivial
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
inhabitedIsType, 
natural_numberEquality, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
independent_pairFormation, 
cumulativity, 
intEquality, 
equalityIstype, 
hyp_replacement, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
voidElimination, 
unionElimination, 
inlFormation_alt, 
inrFormation_alt, 
equalityElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
functionExtensionality, 
approximateComputation, 
int_eqEquality, 
Error :memTop, 
isect_memberEquality_alt, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
sqequalBase, 
unionIsType
Latex:
\mforall{}I:Cname  List.  \mforall{}x1,x2:nameset(I).  \mforall{}i:\mBbbN{}2.  \mforall{}y1,y2:Cname.
    (x2:=i)[y1:=y2]  =  ((x2:=i)  o  rename-one-name(y1;y2))  supposing  (\mneg{}(y2  \mmember{}  I-[x1;  x2]))  \mwedge{}  (\mneg{}(y1  \mmember{}  I))
Date html generated:
2020_05_21-AM-10_49_28
Last ObjectModification:
2019_12_10-PM-00_44_07
Theory : cubical!sets
Home
Index