Nuprl Lemma : case-type-comp_wf
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}]. ∀[A:{Gamma, phi ⊢ _}]. ∀[B:{Gamma, psi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
∀[cB:Gamma, psi ⊢ Compositon(B)].
  (case-type-comp(Gamma; phi; psi; A; B; cA; cB) ∈ Gamma, (phi ∨ psi) ⊢ Compositon((if phi then A else B))) supposing 
     (compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB) and 
     Gamma, (phi ∧ psi) ⊢ A = B)
Proof
Definitions occuring in Statement : 
case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB)
, 
compatible-composition: compatible-composition{j:l, i:l}(Gamma; phi; psi; A; B; cA; cB)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
case-type: (if phi then A else B)
, 
same-cubical-type: Gamma ⊢ A = B
, 
context-subset: Gamma, phi
, 
face-or: (a ∨ b)
, 
face-and: (a ∧ b)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
, 
all: ∀x:A. B[x]
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
subtype_rel: A ⊆r B
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB)
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
same-cubical-type: Gamma ⊢ A = B
, 
cand: A c∧ B
, 
cubical-type: {X ⊢ _}
, 
csm-ap-type: (AF)s
, 
interval-0: 0(𝕀)
, 
csm-ap-term: (t)s
, 
csm-adjoin: (s;u)
, 
csm-ap: (s)x
, 
squash: ↓T
, 
interval-type: 𝕀
, 
csm+: tau+
, 
csm-comp: G o F
, 
cc-snd: q
, 
cc-fst: p
, 
compose: f o g
, 
true: True
, 
interval-1: 1(𝕀)
, 
case-type: (if phi then A else B)
, 
cubical-term-at: u(a)
, 
pi2: snd(t)
, 
case-term: (u ∨ v)
, 
case-cube: case-cube(phi;A;B;I;rho)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
uiff: uiff(P;Q)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
face-1: 1(𝔽)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
, 
respects-equality: respects-equality(S;T)
Lemmas referenced : 
case-type_wf, 
case-type-comp_wf1, 
constrained-cubical-term_wf, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
context-subset_wf, 
face-or_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
thin-context-subset-adjoin, 
istype-cubical-term, 
face-type_wf, 
cube_set_map_wf, 
uniform-comp-function_wf, 
compatible-composition_wf, 
same-cubical-type_wf, 
face-and_wf, 
subset-cubical-type, 
face-term-implies-subset, 
face-term-and-implies1, 
face-term-and-implies2, 
composition-structure_wf, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_wf, 
fset_wf, 
nat_wf, 
cubical-term-equal, 
subtype_rel_self, 
cubical-term-eqcd, 
csm-id-adjoin_wf-interval-1, 
csm-case-term, 
csm-case-type, 
csm-face-or, 
csm-face-term-implies, 
face-1_wf, 
subset-cubical-term, 
context-subset-is-subset, 
I_cube_pair_redex_lemma, 
lattice-point_wf, 
face_lattice_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
cubical-term-at_wf, 
lattice-1_wf, 
csm-face-1, 
face-forall_wf, 
csm-face-type, 
csm-same-cubical-type, 
context-subset-subtype-and, 
context-subset-subtype-and2, 
csm-face-and, 
context-subset-map, 
cube_set_map_subtype3, 
sub_cubical_set_self, 
sub_cubical_set_functionality, 
context-iterated-subset1, 
case-type-same1, 
sub_cubical_set_transitivity, 
context-iterated-subset2, 
cc-fst_wf_interval, 
context-adjoin-subset2, 
face-forall-implies, 
csm-id-adjoin_wf, 
interval-0_wf, 
face-forall-implies-0, 
sub_cubical_set_functionality2, 
thin-context-subset, 
context-subset-swap, 
squash_wf, 
true_wf, 
csm-face-forall, 
csm-comp_wf, 
csm+_wf_interval, 
face-forall-map, 
context-subset-term-subtype, 
case-type-same2, 
cubical_type_ap_morph_pair_lemma, 
cubical_type_at_pair_lemma, 
csm+_wf, 
subtype_rel-equal, 
cubical-term_wf, 
csm-interval-type, 
istype-universe, 
iff_weakening_equal, 
face-type-at, 
fl-eq_wf, 
eqtt_to_assert, 
assert-fl-eq, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
face-forall-implies-1, 
iff_imp_equal_bool, 
btrue_wf, 
iff_functionality_wrt_iff, 
istype-true, 
face-term-implies_wf, 
face-forall-or, 
implies-face-forall-holds, 
face-or-eq-1, 
csm-comp-term, 
subset-cubical-term2, 
subtype-respects-equality, 
cubical-type-at_wf, 
interval-1_wf, 
face-and-eq-1, 
csm-context-subset-subtype2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation_alt, 
universeIsType, 
instantiate, 
applyEquality, 
sqequalRule, 
inhabitedIsType, 
equalityIstype, 
dependent_functionElimination, 
independent_functionElimination, 
functionExtensionality, 
rename, 
promote_hyp, 
functionEquality, 
lambdaEquality_alt, 
cumulativity, 
universeEquality, 
setElimination, 
Error :memTop, 
productEquality, 
isectEquality, 
independent_pairFormation, 
hyp_replacement, 
productElimination, 
applyLambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
unionElimination, 
equalityElimination, 
dependent_pairFormation_alt, 
voidElimination
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].  \mforall{}[B:\{Gamma,  psi  \mvdash{}  \_\}].
\mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].  \mforall{}[cB:Gamma,  psi  \mvdash{}  Compositon(B)].
    (case-type-comp(Gamma;  phi;  psi;  A;  B;  cA;  cB)
      \mmember{}  Gamma,  (phi  \mvee{}  psi)  \mvdash{}  Compositon((if  phi  then  A  else  B)))  supposing 
          (compatible-composition\{j:l,  i:l\}(Gamma;  phi;  psi;  A;  B;  cA;  cB)  and 
          Gamma,  (phi  \mwedge{}  psi)  \mvdash{}  A  =  B)
Date html generated:
2020_05_20-PM-05_18_25
Last ObjectModification:
2020_04_18-PM-07_36_16
Theory : cubical!type!theory
Home
Index