Nuprl Lemma : face_comp_wf

[G:j⊢]. (face_comp() ∈ G ⊢ CompOp(𝔽))


Proof




Definitions occuring in Statement :  face_comp: face_comp() composition-op: Gamma ⊢ CompOp(A) face-type: 𝔽 cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T face_comp: face_comp() subtype_rel: A ⊆B uimplies: supposing a all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u) cubical-path-condition': cubical-path-condition'(Gamma;A;I;i;rho;phi;u;a1) bdd-distributive-lattice: BoundedDistributiveLattice I_cube: A(I) functor-ob: ob(F) pi1: fst(t) face-presheaf: 𝔽 lattice-point: Point(l) record-select: r.x face_lattice: face_lattice(I) face-lattice: face-lattice(T;eq) free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x]) constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P) mk-bounded-distributive-lattice: mk-bounded-distributive-lattice mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o) record-update: r[x := v] ifthenelse: if then else fi  eq_atom: =a y bfalse: ff btrue: tt cubical-subset: I,psi rep-sub-sheaf: rep-sub-sheaf(C;X;P) cat-arrow: cat-arrow(C) cube-cat: CubeCat pi2: snd(t) names-hom: I ⟶ J uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q cube-set-restriction: f(s) fl-morph: <f> fl-lift: fl-lift(T;eq;L;eqL;f0;f1) face-lattice-property free-dist-lattice-with-constraints-property lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac) lattice-extend: lattice-extend(L;eq;eqL;f;ac) lattice-fset-join: \/(s) reduce: reduce(f;k;as) list_ind: list_ind fset-image: f"(s) f-union: f-union(domeq;rngeq;s;x.g[x]) list_accum: list_accum respects-equality: respects-equality(S;T) composition-op: Gamma ⊢ CompOp(A) composition-uniformity: composition-uniformity(Gamma;A;comp) face-type: 𝔽 constant-cubical-type: (X) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) cube_set_map: A ⟶ B psc_map: A ⟶ B nat-trans: nat-trans(C;D;F;G) cat-ob: cat-ob(C) op-cat: op-cat(C) spreadn: spread4 fset: fset(T) quotient: x,y:A//B[x; y] type-cat: TypeCat name-morph-satisfies: (psi f) 1 lattice-1: 1 fset-singleton: {x} cons: [a b] cat-comp: cat-comp(C) compose: g functor-arrow: arrow(F) nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) subset-trans: subset-trans(I;J;f;x) csm-ap-term: (t)s csm-ap: (s)x cubical-term: {X ⊢ _:A}
Lemmas referenced :  cubical_set_wf csm-face-type cubical-path-0_wf face-type_wf cubical-term_wf cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf face-type-at face-type-ap-morph lattice-point_wf face_lattice_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf equal_wf lattice-meet_wf lattice-join_wf nc-1_wf extend-face-term_wf cube_set_restriction_pair_lemma I_cube_pair_redex_lemma cat_arrow_triple_lemma nh-comp_wf subtype_rel_self names-hom_wf name-morph-satisfies_wf name-morph-satisfies-comp squash_wf true_wf istype-universe nh-comp-assoc iff_weakening_equal nh-id-right s-comp-nc-1 fl-morph-comp2 fl-morph_wf cubical-term-at_wf extend-face-term-property cubical-subset-I_cube-member respects-equality_weakening composition-uniformity_wf istype-nat istype-void cubical_type_ap_morph_pair_lemma cubical-type_wf nc-e'_wf nc-e'-lemma3 csm-ap-term_wf subset-trans_wf cube_set_map_wf subtype_rel-equal extend-face-term-morph nh-id_wf nh-id-left cubical-term-equal nc-e'-lemma1 face-lattice-property free-dist-lattice-with-constraints-property
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut universeIsType instantiate introduction extract_by_obid hypothesis functionExtensionality sqequalRule thin sqequalHypSubstitution isectElimination Error :memTop,  hypothesisEquality applyEquality because_Cache setElimination rename independent_isectElimination dependent_functionElimination dependent_set_memberEquality_alt natural_numberEquality unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality independent_pairFormation voidElimination setEquality intEquality productEquality cumulativity isectEquality equalityTransitivity equalitySymmetry hyp_replacement lambdaFormation_alt inhabitedIsType productElimination imageElimination imageMemberEquality baseClosed universeEquality equalityIstype functionIsType setIsType

Latex:
\mforall{}[G:j\mvdash{}].  (face\_comp()  \mmember{}  G  \mvdash{}  CompOp(\mBbbF{}))



Date html generated: 2020_05_20-PM-05_24_05
Last ObjectModification: 2020_04_10-PM-01_23_12

Theory : cubical!type!theory


Home Index